

 Java Programming 1 Marlene Galea
 SEC Notes

 Java Programming 2 Marlene Galea
 SEC Notes

PROGRAMMING IN JAVA

INTRODUCTION TO PROGRAMMING 6

WHAT IS AN ALGORITHM? 6
WHAT IS A PROGRAMMING LANGUAGE? 6
WHAT IS A PROGRAM? 6

ICON-BASED PROGRAMMING 7

FEATURES OF ICON-BASED PROGRAMMING 7

TEXT-BASED PROGRAMMING: INTRODUCTION TO JAVA 8

WHAT DETERMINES THE CHOICE OF A PROGRAMMING LANGUAGE? 8
WHAT IS JAVA? 8
FEATURES AND BENEFITS OF JAVA 9
DISADVANTAGES OF JAVA 9

GETTING JAVA ON YOUR COMPUTER 10

WHAT YOU WILL NEED TO DEVELOP AND RUN JAVA APPLICATIONS 10
INSTALLING THE JDK (JAVA DEVELOPMENT KIT) 11

USING BLUEJ TO CREATE JAVA PROGRAMS 11

DOWNLOADING BLUEJ 12
STARTING A PROJECT 12

USING JCREATOR TO CREATE JAVA PROGRAMS 11

DOWNLOADING JCREATOR 12
STARTING A PROJECT 12

RUNNING A JAVA PROGRAM 13

WHAT HAPPENS WHEN WE RUN A JAVA PROGRAM? 13
WHAT IS PLATFORM INDEPENDENCE? 13
TWO STEP TRANSLATION 13
HOW DO WE RUN A JAVA PROGRAM? 14
.CLASS AND .JAVA FILES FILES 14
WHAT IS A JAVA APPLET? 15

 Java Programming 3 Marlene Galea
 SEC Notes

OBJECT ORIENTED PROGRAMMING 15

WHAT ARE CLASSES AND OBJECTS? 15
THREE PRINCIPLES OF OBJECT ORIENTED PROGRAMMING 16
INHERITANCE 16
POLYMORPHISM 17
ENCAPSULATION 17
YOUR VERY FIRST CLASS 18
OBJECT PROPERTIES (OBJECT VARIABLES) 18
WRITING METHODS: OBJECT ACTIONS 19
STRUCTURE OF A METHOD 19
THE MAIN CLASS AND MAIN METHOD 20
MAIN METHOD DECLARATION 20
CREATING INSTANCES OF A CLASS 21
CALLING A METHOD 23
THE CONSTRUCTOR METHOD 24
GENERAL STRUCTURE OF A CLASS 25

SCREEN OUTPUT IN JAVA 26

PRINT/PRINTLN 26
PRINTING LITERALS 27
PRINTF 27
CHANGING THE OUTPUT IN JCREATOR 28
TO OBTAIN THE OUTPUT IN THE SAME WINDOW 28
TO OBTAIN THE OUTPUT IN A NEW WINDOW 29
CHANGING THE OUTPUT WINDOW PROPERTIES 29
HOW TO DISPLAY LINE NUMBERS IN JCREATOR 30

COMMENTS IN JAVA PROGRAMS 30

VARIABLES 31

WHAT ARE VARIABLES? 31
VARIABLE TYPES – PRIMITIVE TYPES 31
VARIABLE TYPES - STRINGS 32
THE STRING CLASS 32
VARIABLE NAMES 32
DECLARING VARIABLES 33
DECLARING A SINGLE VARIABLE 33
DECLARING A LIST OF VARIABLES 34
DECLARING A VARIABLE AND SIMULTANEOUSLY PUTTING A VALUE IN IT 34
SCOPE OF VARIABLES 35
VARIABLE INITIALISATION 36
DYNAMIC INITIALISATION 36
VARIABLE TYPES AND VALUE RANGES 37
AUTOMATIC TYPE CONVERSION 38
VARIABLE TYPE COMPATIBILITY CHART 39
TYPE CASTING 39

 Java Programming 4 Marlene Galea
 SEC Notes

FINAL (CONSTANT) VARIABLES 40

DECLARING A CONSTANT 40

KEYBOARD INPUT 41

1. IMPORTING THE SCANNER UTILITY 41
2. CREATING A SCANNER OBJECT 41
3. READING DATA FROM KEYBOARD INTO VARIABLES 41

CODING CONVENTION RULES 42

NAMING CLASSES, VARIABLES AND CONSTANTS 42
CODE BLOCKS 42

ARITHMETIC OPERATORS 43

BASIC ARITHMETIC 43
UNARY OPERATORS 44
THE MATH CLASS 44

CONDITIONAL TRANSFER: IF, IF-ELSE AND SWITCH 46

THE IF STATEMENT 46
THE IF-ELSE STATEMENT 47
LOGICAL OPERATORS 48
NESTED-IF 49
THE SWITCH STATEMENT 50

USING METHOD PARAMETERS 50

LOOPS 52

THE FOR LOOP 52
WHILE AND DO..WHILE 53
NESTED LOOPS 54

ARRAYS 55

USING ARRAYS 55
DECLARING AN ARRAY 55
ASSIGNING AN ARRAY 55
USING ARRAY VARIABLES 55
USING AN ARRAY IN A FOR LOOP 55

USING A THIRD PARTY CLASS: THEY KEYBOARD CLASS 57

USING THE KEYBOARD CLASS 58

 Java Programming 5 Marlene Galea
 SEC Notes

APPENDIX 1: USING THIRD PARTY CLASSES IN LEJOS 59

SIMPLE LEJOS FEATURES 59

APPENDIX 2 – THE STRING CLASS 62

USEFUL METHODS IN JAVA.LANG.STRING 62

APPENDIX 3 – SIMPLE GUI PROGRAMS 64

DISPLAYING TEXT IN A DIALOG BOX 64
ENTERING TEXT IN A DIALOG BOX 65

APPENDIX 4: ARRAY OF OBJECTS 66

DECLARING AN ARRAY OF OBJECTS 66
USING AN ARRAY OF OBJECTS 66

APPENDIX 5: TEXT FILES 68

CREATING A TEXT FILE 68
SAVING TO A TEXT FILE 68
WRITING A LINE OF TEXT TO A TEXT FILE: 68
GETTING DATA FROM A TEXT FILE 68
READING A LINE OF TEXT FROM A TEXT FILE: 68
EXCEPTION HANDLING 69
CAL QUIZ EXAMPLE 69

 Java Programming 6 Marlene Galea
 SEC Notes

Introduction to Programming

Computers can only perform very simple operations like

comparing two values or adding two numbers. They perform

complex tasks by carrying out large numbers of simple operations

after each other. Therefore computerised tasks need to be

specified in perfect detail by programs.

What is an algorithm?

An algorithm is a step by step sequence of instructions designed

to solve a problem.

Algorithms can be expressed in different ways including structure

charts, pseudocode, flowcharts and programming languages.

What is a programming language?

A programming language involves a vocabulary

and set of grammatical rules for instructing a

computer to perform specific tasks.

There are many programming languages and

many means of creating a program. Examples of

programming languages include Cobol, C# and

Java.

What is a program?

A program is an organized list of instructions that the

computer can handle and when executed, causes the

computer to behave in a predetermined manner.

Without programs, computers are useless.

 Start

Input A

Input B

 C = A + B

Output C

End

Flowchart for an
algorithm to input 2
numbers and output

their sum.

 Java Programming 7 Marlene Galea
 SEC Notes

Icon-based programming

Certain programming interfaces make creating programs easier because they allow us to

create programs using icon-based programming. NXT-G developed for Lego Mindstorms

Robotics (shown below) offers an example of icon-based programming.

Other icon based programming interfaces include that of ‘Scratch’

Features of Icon-based programming

• Generally easier and more intuitive;

• One can create programs faster;

• Programs may require more system resources to run than equivalent text-based

programs.

Icons that can
be dragged

onto the
working area to
make a program

Program
created by
dragging

components
from the toolbar

on the side

Icon properties
can be set here
in order to fine

tune the
programs
created

The Lego Mindstorms NXT Programming Interface

Programming
using Scratch

 Java Programming 8 Marlene Galea
 SEC Notes

Text-Based Programming: Introduction to Java

What determines the choice of a programming language?

Every language has its strengths and weaknesses. The choice of language depends on:

• the type of computer the program is to run on;

• what sort of program it is;

• the expertise of the programmer.

What is Java?

Java was originally developed by James Gosling at Sun Microsystems (now a subsidiary of

Oracle Corporation) and was first released in 1995. Java is a third generation, general purpose

language like Pascal, C and C#. It is one of the most important programming languages and

is widely used: from making application software to web applications.

A Text-Based Java Application

A Graphic-Based Java Application

 Java Programming 9 Marlene Galea
 SEC Notes

Features and Benefits of Java

• Portability: Java is platform independent. Java programs are

portable between different types of computers that have a JVM

(Java Virtual Machine). This is because Java programs are first

translated into bytecode which can then run on any machine that

has a Java interpreter (which is part of the JVM).

• Object Oriented: Because it is an object oriented language, Java allows flexible modular

programming and code reusability through encapsulation, inheritance and polymorphism.

• Java Programs are smaller in size so they are simple, economic and efficient.

• Robust: Java is robust (reliable) because it emphasises early checking for errors. Java

compilers can detect problems that would first show up during execution time in other

languages. For instance Java has a runtime exception-handling feature.

• Secure: Java prohibits viruses etc because code runs inside the virtual machine.

• Easy to write, compile and debug: Java is easier than other object oriented programming

languages like C++ because it uses automatic memory allocation and garbage collection.

• Java is distributed: it makes distributed computing easy as writing networked program is

easy. Distributed computing involves several computers on a network working together.

• Java is multithreaded: Multithreading is the ability to perform several tasks independently

and simultaneously within a program.

 Disadvantages of JAVA

• Performance: Java is an interpreted language, so because of the translation process,

programs written in Java have speed issues. However the speed of

a Java program is good enough for most interactive applications

(because in interactive applications the CPU is waiting for user

input most of the time anyway so the speed of translation will not

be the main bottle neck).

 Java Programming 10 Marlene Galea
 SEC Notes

Getting Java on your computer

What you will need to develop and run Java applications

In order to develop and run Java applications you will need a JDK (Java Development Kit) and

you should also get an IDE (Integrated Development Environment). The following explains

these terms and their role.

An IDE e.g. BlueJ or JCreator is used to edit, compile and debug Java code.

Java Development Kit (JDK)

A JDK is a Java software development environment from Sun. Each
new version of the JDK adds features and enhancements to the
language. When Java programs are developed under the new version,
the Java interpreter (Java Virtual Machine) that executes them must
also be updated to that same version.
A JDK includes the JRE, Java compiler, debugger and other tools for
developing Java applets and applications

Java Runtime Environment (JRE)

The Java Runtime Environment (JRE) is what you get when you
download Java software. The The JRE is the runtime portion of Java
software, which is all you need to run it in your Web browser.
The JRE is an implementation of the JVM, all the Java platform core
classes and supporting libraries

The Java Virtual Machine (JVM) is software that
converts the Java intermediate language (bytecode)
into machine language and executes it.. A JVM is a
Java operating program that runs Java programs. It
creates an environment for executing Java code
that behaves like a computer separate from the one
it is running on.

Java Virtual Machine (JVM)
 Java platform core

classes

Supporting Java
platform libraries

Java compiler Debugger

Other tools for developing Java applets & applications

Integrated Development Environment (IDE)

Explaining JDK, JRE, JVM and IDE

 Java Programming 11 Marlene Galea
 SEC Notes

Installing the JDK (Java Development Kit)

Download the JDK from:

Using BlueJ to create Java programs

Downloading BlueJ

Download and install from: http://www.bluej.org/

(You may choose to download both BlueJ and the JDK from

here).

Starting a Project

Select Project>New Project

Go to the URL given above. 1

Select ‘Download’

2

Accept License Agreement
3

Select product to download
4

 Java Programming 12 Marlene Galea
 SEC Notes

Using JCreator to create Java programs

Downloading JCreator

Starting a project

Create a folder on your desktop called ‘My Java Programs’

Go to:
http://jcreator.org/download.htm

Download the correct version of the
software.

1

2

Select File/New/File

1

2

3

Specify the path to save in.
Give the file name
Click Finish

Select Empty Java File
and click Next

3. After the installation is complete, launch
JCreator from the icon on the desk top.

4. The first window to appear is File
associations. Just click next.

5. The next window asks for JDK home
directory. Browse for the directory and
click next.

6. The final window asks for JDK JavaDoc
directory. If you already downloaded the
JavaDoc file, browse for it and click finish.
Otherwise click finish to continue without
the documentation.

 Java Programming 13 Marlene Galea
 SEC Notes

Running a Java Program
What happens when we run a Java program?

The computer does not understand Java, therefore all the programs we write need to be

translated into a form the computer can handle in order for the instructions we write to be

executed. Programs called ‘translators’ are used to do this. In Java translation is done in two

steps: using first a compiler than an interpreter.

What is Platform independence?

A platform is the hardware and system software on which application software can run.

Different platforms normally run different application software. However, Java is platform

independent: it will run on different platforms. This is because the Java compiler does not

produce executable code but bytecode. Then the JVM on the machine that will run the

program changes the bytecode to executable code suitable for the platform it is on.

Two step translation

• The program is first compiled to produce bytecode

o At this stage the user cannot view the actual code but the program is still platform

independent. Therefore the bytecode is ideal for distribution.

• Then the JVM on the machine the program will run on uses an interpreter to translate the

program into executable code. The executable code is platform dependent because it will

be different for a Linux Machine and a Windows PC etc.

Bytecode Compiled

Interpreted

JVM
Java Virtual

Machine
Linux

machine

iPhone

Windows
PC

Java Source
Code

Translation of a Java Program

Platform
Independent Platform

Independent

Platform
Dependent

Interpreted

Interpreted

 Java Programming 14 Marlene Galea
 SEC Notes

How do we run a Java program?

In order to run a program the system needs to first translate it and then execute (obey) the

translated instructions one by one.

This is how you can run a program using JCreator:

1. Write your program.

2. Click the ‘Run’ Menu.

3. Select ‘Run Project’. This will compile and then run your program.

.class and .java files Files

• The programs we write form the source code file and have a .java extension (e.g. hello.java)

• When our source program (the .java file) is compiled the equivalent .class file is created,

this is made up of bytecode.

• The JVM on which the program will run will then translates the bytecode (the .class file)

into something the platform it is on understands and then runs the program.

.java file

The program we write

.class file: Our program

translated to bytecode
Compile

OR use the ‘Build file’ button
to first compile your program…

…and then click the run
button to run it.

Running an application

.java files are compiled to give .class files

 Java Programming 15 Marlene Galea
 SEC Notes

What is a Java Applet?

Applets are used to provide interactive features to web

applications. A Java applet is delivered to the users in the

form of bytecode. Since Java's bytecode is platform

independent Java applets can be executed by browsers for

many platforms, including Microsoft Windows, UNIX and Mac

OS. Java applets can run in a web browser using a JVM.

Object Oriented Programming
Java is an object oriented Language. This means that data is treated as objects to which

methods are applied.

What is are classes and objects?

A class is the blueprint from which individual objects are created.

• The class specifies the properties (data or Object Variables) and methods (actions) that

objects can work with.

• The class ‘Dog’ shown here has properties (name, breed etc) and methods (actions)

(wagTail, getLeash etc)

An object is an instance of a class.

• If you have a pet dog called ‘Fido’, Fido is an object (an instance) of the class ‘Dog’.

• Objects like ‘Fido’, Spot’ and ‘Rocky’ are all instances of ‘Dog’.

The class ‘Dog’ has Object Variables (properties) and Methods.
Fido’, ‘Rocky’ and ‘Spot’ are instances of the class ‘Dog’ .

Fido

Spot

Rocky

Class: Dog

Properties:
• name
• breed
• colour

Methods:
• wagTail
• getLeash

Dog

name
breed
colour

wagTail
getLeash

 Java Programming 16 Marlene Galea
 SEC Notes

Three Principles of Object Oriented Programming

Object Oriented Programming is characterised by the following three principles:

Inheritance

Polymorphism

Encapsulation

Inheritance

• The items in black are classes. (Animal, fish etc)

• Classes have properties (name, breed etc) and methods (actions) (Feed, swim etc)

• Child objects inherit the properties and methods of their parents. (E.g. All dogs inherit the

feeding method from the parent class ‘Animal’ etc)

Cat

CleanSelf

Dog

SmellWell

Duck

Swim

Animal

Speak
Feed

Guard Dog

AttackIntruder

Hunting Dog

FindFox

Police Dog

DetectDrug
s

Pet Dog

GetLeash

Fido Spot Rocky

Inheritance: All dogs inherit the feeding
method from the parent class Animal.

 Java Programming 17 Marlene Galea
 SEC Notes

Polymorphism

Polymorphism is the ability of an action or method to do different things depending on the

object that it is acting upon. For instance a parent class reference (e.g. ‘speak’) can be used to

refer to a child class object: E.g. the method ‘speak’ in the animal class would do different

things when called from the child classes, Dog,

Cat etc. Overloading, overriding and dynamic

method binding are three types of

polymorphism.

For example the three subclasses Cat, Dog and

Duck are based on the Animal abstract class

and can each have their own speak() method.

Although each method reference is to an

Animal, the program will resolve the correct

method reference at runtime. This is an

example of Dynamic (or late) method binding.

Encapsulation

Encapsulation is the ability of an object to be a container (capsule) for related properties (i.e.

data variables) and methods.

Encapsulation allows data hiding so objects

can shield variables from external access.

Variables which are marked as private can only

be seen or modified through the use of public

accessor and mutator methods. Methods can

also be completely hidden from external use.

In Java methods that are visible externally can

only be called by using the object's front door

(i.e. there is no 'goto' branching concept).

Polymorphism: the Animal Class could have a
method called ‘speak’. All animals would do
different things when this method is called.

Encapsulation: Private properties and methods
can only be accessed through accessor or
mutator methods.

 Java Programming 18 Marlene Galea
 SEC Notes

Your very first Class

Let’s say we’re going to develop an application to handle a school system. The school system

will need to handle persons: including ancillary staff, teachers and students. Therefore we

should have a class to be a blueprint for these persons.

Object Properties (Object Variables)

We will therefore create a class called Person in order to later create instances of it to

represents the objects (people) in the school. These objects will all have a name, surname,

address and telephone numbers, therefore the class will have the following properties:

Property
(Variable name)

Description Data type

NOTE: in Java a variable of type
‘String’ can hold words

name This will hold the person’s first name and will be
a word.

String

surname This will hold the person’s surname and will be
a word.

String

address This will hold the person’s address and will be a
few words long.

String

telNum This will hold the person’s telephone number
and since no arithmetic will be carried out on
this number it can be treated as a non-number.

String

The Class Person can be described thus:

In Java we implement the above using a class which we will call Person:

 Java implementation of a simple class called ‘Person’

Person

String name
String surname
String address
String telNum

Class Name

Instance Variables

class Person {
 String name;
 String surname;
 String address;
 String telNum;
}

A class is declared with the ‘class’ keyword.
This class is called ‘Person’
The contents of a class are enclosed within { }

Here our Object Variables are declared as
Strings.
The semi-colon (;) at the end of each line is
necessary

The Properties of the class called ‘Person’: 5 object variables of type String

 Java Programming 19 Marlene Galea
 SEC Notes

Writing Methods: Object Actions
Our objects in the example above: Dog, Cat etc have methods like getLeash and wagTail.

Methods are actions for our object.

Let’s give our Class Person a method that outputs the person’s details on the screen.

In Java we implement the above thus:

Structure of a method

Person
String name
String surname
String address
String telNum

outputPerson()

Class Name

Properties
(Instance Variables)

The properties and methods of the class called ‘Person’

Methods
(Object’s Actions)

class Person {
 String name;
 String surname;
 String address;
 String telNum;

 public void outputPerson(){
 System.out.println (this.name);
 System.out.println (this.surname);
 System.out.println (this.address);
 System.out.println (this.telNum);
 }
}

This line instructs the computer
to output the address of ‘this’
object.

This is method outputPerson().
It is a ‘public’ method as it can be
accessed from outside this class.
It is ‘void’ as it does not return a
value.

The Properties and methods of the Object called ‘Person’

The contents of the method are
held between { }

public void outputPerson(){
 // body of method
}

Return type – specifies the type of data returned by the
method. If the method does not return any data the return
type is ‘void’.

Method name – can be any Java
legal identifier

Parameter list – a list of type and
identifier pairs that receive values of
arguments passed to method. This is
empty in methods with no parameters.

Public/private
– a public
method is
available to
other classes, a
private method
isn’t.

 Java Programming 20 Marlene Galea
 SEC Notes

The Main Class and Main Method

In the class Person we have created the blueprint for all persons objects that might be needed

in our application.

A Java application normally consists of more than one class however. One of these classes

needs to be the main class: the main class always includes a method called ‘main’ which is the

main method. The main class is important because this is the class the Java Virtual Machine

looks for to start executing the program. In an application you can have many methods in

different classes, you may also have many methods in the main class but you can only have

one main method because this is where the program starts running.

We will now create a main class and use instances of Person in its main method.

Main Method Declaration

Now let’s take a closer look at the main method signature:

The Main Class and Main method

class SchoolSystem{

 public static void main (String args[]) {
 statement/s;
 }
}

3. The instructions of the main method
of this application will be put here.

4. End of method ‘main’

5. End of class SchoolSystem

2. Main method declaration

1. The class SchoolSystem will include
the main method of our application.

public static void main (String args[]) {
 // body of method
}

Public/private – a public method
is available to other classes, a
private method isn’t. The main
method is public so the JVM can
begin execution of the program.

Return type – specifies the type of data returned
by the method. The main method does not
return data, so the return type is ‘void’. Once main
method execution is over, the program stops. So
data can’t be returned by the Main method.

Static – the main method is ‘Static’
to be available for execution without
an object instance. (Otherwise you
need an object instance to call a
method.)

String args[] - This signifies that the
user may enter parameters to the java
program at command line. We can
use both String[] args or String args[].

 Java Programming 21 Marlene Galea
 SEC Notes

Creating instances of a class

Our school system application will require us to create instances of Person: all these objects

will have the properties (variables) and methods of the class Person class.

The school system may also have a class called Teacher and another called Student that will

inherit all the properties and methods of Person and possibly extend them. There would then

be instances of Teacher and Student as shown below.

Person

String name
String surname
String address
String telNum

outPerson()

Class Name

Instance Variables

Methods

cleanerA

Anna
Borg
88,Main Street, B’Kara
21448234

Can output details

teacherA

Maria
Calleja
23, Vine Street, Birgu
21654558
Geography
No. of lessons

Can output details
Can output no. of
free lessons

studentA

John
Mallia
14, Bishop Street, Lija
21442434
Chemistry
Biology

Can output details

Teacher
Extends Person

String Subject
Int noOfLessons

getFreeLessons()

Student
Extends Person

String OptSubject1
String OptSubject2

Inheritance: classes
Teacher and Student
inherit the variables

and methods of
person

Object cleanerA is an
instance of Person. We
could have many such

instances: cleanerB,
messengerA etc to

represent the different
school personnel.

Objects teacherrA and
studentA are instance of

Teacher and Student
respectively.

Creating objects: instances of a class

 Java Programming 22 Marlene Galea
 SEC Notes

Now we will implement something similar in our code by creating and using objects of type

Person in our main method.

One of the ‘persons’ involved in the school is the cleaner ‘Anna Borg’. Therefore in our

application Anna Borg will be an instance of the class Person.

To create cleanerA, an object of type person, we write:

To create the memory for the object we use the keyword ‘new’ and then we call the default

constructor method for the class, here Person(). (re constructor methods, see below.)

The above can also be implemented in one line as:

Here’s what our main method will look like:

Now we have created the object cleanerA representing Anna Borg but we have not seen

anything on the screen to show it.

We could do this by using the method outPerson() in the class Person. Therefore now we will

see how we can call and use methods in our applications.

class SchoolSystem{

/* This application uses the object Person to create
 the instance 'cleanerA'*/

 public static void main (String args[]){
 Person cleanerA= new Person();
 cleanerA.name = "Anna";
 cleanerA.surname = "Borg";
 cleanerA.address = "88, Main Street, B'Kara";
 cleanerA.telNum = "21448234";
 }
}

2. The main method of this application.

3. Declaring cleanerA, an object of type
Person.

4. Putting the values in the object
variables.

5. End of method ‘main’

6. End of class SchoolSystem

Creating an instance of the object Person.

1. /* */ enclose a comment – a note for
the programmer that will be ignored by
the Java compiler

Person cleanerA;

Person cleanerA= new Person();

cleanerA = new Person();

 Java Programming 23 Marlene Galea
 SEC Notes

Calling a Method

Here’s how we will call the method outputPerson() to output the details of cleanerA.

Hence the code shown below will:

• Create an instance of class Person called ‘cleanerA’

• Place the shown data in the object variables of cleanerA

• Call the method outputPerson() for cleanerA

• Execute the method outputPerson() to give the output shown here.

class SchoolSystem{

/* This application uses the object Person to create the
 instance 'cleanerA' and then calls the method
 outputPerson() to output cleanerA's details.*/

 public static void main (String args[]){
 Person cleanerA= new Person();

 cleanerA.name = "Anna";
 cleanerA.surname = "Borg";
 cleanerA.address = "88, Main Street, B'Kara";
 cleanerA.telNum = "21448234";

 cleanerA.outputPerson();
 }
}

Calling the method
outputPerson(); for the object
cleanerA,

Calling the method ‘outputPerson()’

Output:

cleanerA.outputPerson();

Method name – can be any
Java legal identifier.

Arguments – arguments to
be passed to the method.

Object Name – can be
any Java legal identifier

 Java Programming 24 Marlene Galea
 SEC Notes

The Constructor method

A constructor method creates an object of the class it is in: it initialises the instance variables

and creates a place in memory to hold the object. Java has a default constructor that is called

whenever we don’t write a constructor ourselves. We can also write our own constructors.

Let’s take an application that will be used to take window orders. One of

the classes in this application will be Window and two of its instance

variables would be ‘length’ and ‘breadth’. It can be time-consuming to

initialize all variables in a class every time an instance of it is created.

We may set default values for the variables length and breadth so when we initialize a Window

object it would have those default dimensions. A constructor method will let us do this. A

Constructor method for class Window is shown here:

Constructors may include parameters of various types. When the constructor is invoked using

the ‘new’ operator, the types must match those specified in the constructor definition.

Window

length
breadth

getArea
getPerimeter

class Window{
 float length;
 float breadth;

 public Window(){
 length = 1;
 breadth = 2;
 }
}

Constructor Method name – same
as class name

Constructor Method has no return
type because it never returns a value

Initialising object variables

Constructor
Method

Writing a constructor method

class winApp{
 public static void main (String args[]){
 Window kitchenWin = new Window();
 System.out.println("Length: "+kitchenWin.length);
 System.out.println("Breadth: "+kitchenWin.breadth);
 }
}

Calling the Constructor
Method.
If we hadn’t written a
constructor, this would call
the Java default constructor.
The default constructor also
takes no arguments and
performs no special actions
or initializations.

The Constructor Method we wrote initialises Length and Breadth to 1
and 2 respectively.
Therefore when the output statements in the main method are
executed, we obtain the output shown here.

 Java Programming 25 Marlene Galea
 SEC Notes

General Structure of a class

Therefore we have now seen that a class is implemented by:

• A number of instance variables that describe its properties

• A number of methods that describe its actions

This is the general form and syntax of a Java class:

ClassName

type instance-variable1
type instance-variable2
…
type instance-variableN

classname()
type methodname1()
…
type methodnameN()

Class Name

Instance Variables

methods

Generalised Structure of a Class

class classname {

 type instance-variable1;
 type instance-variable2;
 …
 type instance-variableN;

 classname (parameter list){
 // body of method
 }

type methodname1 (parameter list){
 // body of method
 }

 …
 type methodnameN (parameter list){
 // body of method
 }
}

Generalised Syntax of a Class

Class Name

Instance Variables

Methods

Constructor method has
the same name as the
class and no return type
(not even void)

NOTE:
• Java is case sensitive, so e.g. ‘class’

and ‘Class’ are not the same.
• All lines of instructions end in a

semicolon ‘;’

 Java Programming 26 Marlene Galea
 SEC Notes

Screen output in Java
Let’s take a closer look at the output instruction in our application

print/println

The syntax for printing the words ‘I Love Java’ on your screen is the following:

System.out.println (“I Love Java!”);

• The println command causes the item in brackets to be displayed and then moves the

cursor to the next line

• The print command causes the item in brackets to be displayed, leaving the cursor after

the last letter displayed.

System.out.println (“Name:” + this.name);

System is a built-in class
present in java.lang
package.
It contains pre-defined
methods and fields, which
provides facilities like
standard input, output, etc.

println() is a method in PrintStream
class to print the data values.

out is a static final field (ie,
variable)in System class which is of
the type PrintStream

What is to be output is placed in ().
• Messages are output in “ “.
• Data (e.g. this.name) should not have “ “
• + is used to join different output items

Println()
moves the cursor to the next
line after writing ‘I Love Java’ so
the next output statement ‘Do
You?’ is given on the next line.

Print()
does not move the cursor to the
next line after writing ‘I Love Java’ so
the next output statement ‘Do You?’
is given on the same line

System.out.println("I Love Java");
System.out.println("Do you?");

System.out.print("I Love Java");
System.out.println("Do you?");

System.out.print("I Love Java." + " ");
System.out.println("Do you?");

+ “ “

Introduces a forced space. So
there is a space between the
first and second output.
(Before ‘Do you?’)

Print() and Println()

 Java Programming 27 Marlene Galea
 SEC Notes

Printing Literals

A literal is a notation for representing a fixed value in

source code.

There are few character literals which are not readily

printable through a keyboard. The table below shows

the codes that can represent these special characters.

The letter d such as in the octal, hex etc. represents a

number. Escape characters

Printf

Printf can be used instead of ‘print’ or ‘println’ to set the number of decimal places to print.

Therefore the following program using these escape characters will give the output shown

below.

Escape Meaning
 \n New line
 \t Tab
 \b Backspace
 \r Carriage return
 \f Formfeed
 \\ Backslash
 \' Single quotation mark
 \" Double quotation mark
 \d Octal
 \xd Hexadecimal
 \ud Unicode character

class escchar {
 public static void main (String[] args){
 System.out.println (" Java \n is a great \n programming language.");
 System.out.println (); //to skip a line
 System.out.println ("Column \t column\t column");
 System.out.println ("Java \t Java\t Java");
 System.out.println ();
 System.out.println ("Now I ask you, \'Don't you think Java is really fun?\'");
 System.out.println ();
 System.out.printf ("Look Java can even print this number to two decimal
 places:%10.2f",3.1415);
 }
}

Output:

Using the escape characters \n, \t,\’ and printf

 Java Programming 28 Marlene Galea
 SEC Notes

Changing the output in JCreator

To obtain the output in the same window

Now your output will appear in the

window below your program and you

will be able to scroll the output if

necessary.

Go to Configure\Options

Select JDK Tools

From the Select Tool Type, pull
down Run Application and click
default and then ‘Edit’.

Click Edit and the Tool
Configuration: Run Application
dialog box appears.

Click Capture output.

1

2

3

4

5

 Java Programming 29 Marlene Galea
 SEC Notes

To obtain the output in a new window

In the above dialog box, uncheck ‘Capture Output’ and click ‘OK’,.

Changing the output Window properties

If you would like your output in a new window, you can set its properties to your liking. For

instance to show as black text on a white background follow these steps:

Right click title bar and
select ‘properties

Select your colours
accordingly

You can edit further aspects of
the output using the rest of

the tabs

Select colour tab.

1

2

3

 Java Programming 30 Marlene Galea
 SEC Notes

How to display line numbers in JCreator

As our programs grow larger, we may appreciate having JCreator supply us with the line

numbers for the lines of code on the side.

To display line numbers select ‘show line numbers’

from the ‘View’ Menu as shown.

Else

To always show line numbers follow the steps below:

Comments in Java Programs
Comments within programs allow us to describe the code so that later we (or anyone else) will

find the program easier to follow.

There are 3 types of commenting in Java:

• // text : the compiler ignores everything from // to the end of the line

• /*text*/ :the compiler ignores everything from /* to */

• /** documentation */ : can span over several lines as shown below:

Choose ‘Options
from the Configure
Menu

Click on Editor (+) and double click Java

In compatibility pane, select ‘Show
line numbers’.
Click ‘Apply’ and ‘OK’.

/**This is a comment
* that spans more
* than one line
*/

1

2

3

 Java Programming 31 Marlene Galea
 SEC Notes

Variables

What are variables?

Variables are areas of memory identified by a

name. Program instructions can read data from

variables or write data to them.

Therefore the contents of variables are changed

while a program is running. For instance a variable

can hold a null value (0) when a program starts

running but later in the program its value can

change to 5 or 7 etc.

Variable types – Primitive Types

Variables have different types, depending on the

data they can hold. A primitive type is

already defined by the language and therefore

‘ready to use’.

The names of these variable types (eg. Byte,

short, int etc) are reserved keywords.

Variable type

Variable size

Accepted Data Range

byte 8 bits -128 to 127

short 16 bits -32,768 to 32,767

int 32 bits -2,147,483,648 to -2,147,483,647

long 64 bits -9,223,372,036,854,755,808 to 263 - 1

float 32 bits 1.4e045 to 3.4e38

double 64 bits 4.9e324 to 1.8e308

char 16 bits O to 65,535

boolean 1 bit True or false

Variable

Value

Variables are areas of memory that can
hold program data

Mark
75

Mark
85

The value in a variable can change while
the program is running

 Java Programming 32 Marlene Galea
 SEC Notes

Variable types - Strings

Java allows us to use character strings because it has the ‘java.lang.String’ class. The String

class is not really a primitive data type, but Java allows us to use it like a primitive type.

The String class

Enclosing strings within double quotes automatically creates a new String object; for example,

String s = "this is a string";

Variable names

Variable names must obey certain rules and conventions:

• Variable names must not be a Java keyword or reserved word

String Class

+length()

+equals()

+ toLowerCase()

+toUpperCase()

+charAt()

name

Jane

surname

Borg

town

Lija

When we create a String we are creating an object of type String.

Java reserved words

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

A list of Java Reserved Words and that therefore cannot be variable names

 Java Programming 33 Marlene Galea
 SEC Notes

• Variable names must not be Boolean literal (‘true’/’false’) or ‘null’

• Variable names must be unique within their scope.

o E.g. you cannot have two variables of the same name declared at class level.

• Variable names must not contain blank spaces

o E.g. The variable name ‘client name’ is not acceptable but ‘client_name’ is.

• Variable names cannot start with a number. They must start with a letter, underscore

(_) or dollar sign ($).

o E.g. ‘2num’ is not acceptable but ‘num2’ is acceptable.

Declaring variables

Before a variable can be used, it needs to be declared. This means one needs to state its type

and name.

Declaring a single variable:

The following gives the output shown here:

type variable_name;

int

age;

Declares an integer
variable called ‘age’

type variable_name;

string

name;

Declares a string
variable called ‘name’

Syntax for declaring a single variable

public class declarevar1 {

 public static void main(String[] args) {
 String name;
 name = "Flower Shop";
 System.out.print("The shop name is" + " " + name) ;
 }
}

Declaring a single variable

 Java Programming 34 Marlene Galea
 SEC Notes

Declaring a list of variables:

The following gives the output shown here:

Declaring a variable and simultaneously putting a value in it:

The following gives the output shown here:

int age = 15;
Declares an integer variable
called age and places the value
15 in it

int age, max, min; declares 3 integer
variables

public class declarevar1 {

 public static void main(String[] args) {
 String name = "Flower Shop";
 System.out.print("The shop name is" + " " + name) ;
 }
}

Declaring a variable and putting a value in it simultaneously

public class declarevar1 {

 public static void main(String[] args) {
 String name, village;
 name = "Flower Shop";
 village = "Lija";
 System.out.println("The shop name is" + " " + name) ;
 System.out.print("Village:" + " " + village) ;
 }
}

Declaring a list of variable

 Java Programming 35 Marlene Galea
 SEC Notes

Scope of variables

A scope is created within a block of statements enclosed in curly brackets. A variable declared

within curly brackets is only ‘visible’ within those curly brackets and cannot be used outside

them.

1. Variables declared at class level and those declared enclosed in curly brackets can both be

accessed within those curly brackets.

This program gives the output shown:

2. Variables declared within curly brackets can not be accessed outside those curly brackets

This program gives the error message shown:

class scopeexample{
 public void window {
 int age = 15;
 {
 int height = 160;
 System.out.println(age);
 System.out.println(height);
 }
 }
}

‘age’ has a scope
within all this method
included within the

curlies below { }

‘height’ has a scope
limited to these { }

class scopeexample{
 public static void main (String[] args){
 int age = 15;
 {
 int height = 160;
 }
 System.out.println(age);
 System.out.println(height);
 }
}

The program does not
compile because ‘height’ is

declared between these
twisted brackets and so its
scope is limited to them. It

cannot therefore be accessed
from outside those brackets
to be printed on the screen.

Scope of a variable

Trying to access a variable from outside its scope

 Java Programming 36 Marlene Galea
 SEC Notes

3. Variables declared enclosed in curly brackets can be accessed within those curly brackets

(variables declared at class level can be accessed from anywhere within that class).

Variable Initialisation

Normally all variables are initialised to zero or null but one can always initialise a variable.

The compiler never assigns a default value to an uninitialized local variable. So assign it a value

before using it. Accessing an uninitialized local variable gives a compile-time error.

To initialize a variable to a value we use the ‘=’ sign. Both these examples declare the variable

‘area’ as an integer and initialize it to ‘10’.

Dynamic initialisation

In Java variables can be initialised dynamically, this means that a variable can be initialised at

the time it is declared using a valid expression.

E.g. here area is being initialised dynamically as the product of ‘length’ and ‘breadth’:

This program gives the output shown:

class scopeexample{
 public static void main (String[] args){
 int age = 15;
 {
 int height = 160;
 System.out.println(height);
 }
 System.out.println(age);
 }
}

‘age’ has a scope within all this
class so it can be printed from

anywhere within it.

‘height’ has a scope limited to
these { } and can be printed

from within them

int area;
area = 10;

int area = 10

The ‘=’ sign is used to
put a value into a
variable

 int area = length * breadth;

Scope of class level variables

 Java Programming 37 Marlene Galea
 SEC Notes

Variable types and value ranges

The relationship between a variable and its value is the same as that between a container and

its contents. The variable and the value have to match in their size and type: you cannot put a

value that is too large into a variable too small to contain it and the value type has to be

acceptable for that variable type.

Each primitive data type has a fixed number of bits in which to accommodate values, hence

each data type has its acceptable data range.

Variable type

Variable size

Accepted Data Range

byte 8 bits -128 to 127
short 16 bits -32,768 to 32,767

int 32 bits -2,147,483,648 to -2,147,483,647
long 64 bits -9,223,372,036,854,755,808 to 263 - 1
float 32 bits 1.4e045 to 3.4e308

double 64 bits 4.9e324 to 1.8e308
char 16 bits O to 65,535

boolean 1 bit True or false
So for example the number 50 can fit into a variable of type ‘byte’ but the number 128 cannot

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Num1

10

You cannot put a value that is too
large into a variable too small to

contain it

Num1

2

You can put a value into any
variable that is large enough to

contain it

Imagine you are putting numbers
that are physically bigger than the
box into which we try to put them
(here our variable, called num1)

Scope of class level variables

 Java Programming 38 Marlene Galea
 SEC Notes

Automatic type conversion

Similarly it is possible to put the contents of smaller variables into larger variable types but not

vice versa.

Num1:
byte

128

You cannot put 128 into a variable
of type byte because it is too large

50

You can put 50 into a variable of
type byte because it is between -

128 and 127

Num1:
byte

byte length = 5;
int height = length;

Putting a byte variable into a larger
int variable is allowed

int length = 5;
byte height = length;

Putting an int variable into a
smaller byte variable is not allowed

length
(byte)

length
(int)

height
(int) height

(byte)

Scope of class level variables

The triangle, the circle and the square are different
shapes.
However because one is smaller than the other, the
triangle can easily be placed within the circle, and the
square.
The circle can also easily be placed inside the square.
But there’s no way anyone could put this square into the
triangle.

Automatic type conversion

Automatic type conversion

 Java Programming 39 Marlene Galea
 SEC Notes

Variable Type Compatibility Chart

The following chart summarises variable compatibility, that is, what variable types can be

copied to which.

The inner box can fit into the outer box but not vice versa

Type casting

Java can automatically cast (change) from one type to another as long as the type fits into the

above compatibility chart.

The syntax to typecast one variable into another is

However the following does not fit in with the above compatibility chart and so is not correct

and will give an error:

ERROR!

float

32 bit

double

64 bit

byte

8 bit

short

16 bit

int

32 bit

long

64 bit

char

16 bit

boolean

1 bit

boolean pass = true;
int a = int(pass);

double pi = 3.1415;
int x = (int) pi;

int pi = (int) 3.1415;

Forcing the data item to fit
into an integer variable.

Forcing the data item to fit
into an integer variable.

Variable types in the inner boxes can fit in the outer boxes but not vice versa

 Java Programming 40 Marlene Galea
 SEC Notes

Final (Constant) Variables

Final Variables or Constants are variables whose value cannot be changed

while the program is running.

Declaring a constant

In Java a constant is declared as a static and final variable

The following gives the output shown here:

Had the program been written like this

it would have given the same output:

Constant

Value

class multiply {
 public static void main (String args[]){
 final int MULTIPLE = 5;
 System.out.println (1 * MULTIPLE);

 …
 }

static final int AGE = 5;

‘final’ shows the
variable is a constant

Static so the variable to be
available without loading an
instance of the class where it

Constant names are generally
written in ALL CAPS

public class multiply {
 static final int MULTIPLE = 5;
 public static void main (String args[]){
 System.out.println (1 * MULTIPLE);
 System.out.println (2 * MULTIPLE);
 System.out.println (3 * MULTIPLE);
 System.out.println (4 * MULTIPLE);
 System.out.println (5 * MULTIPLE);
 System.out.println (6 * MULTIPLE);
 System.out.println (7 * MULTIPLE);
 System.out.println (8 * MULTIPLE);
 System.out.println (9 * MULTIPLE);
 System.out.println (10 * MULTIPLE);
 }
} Using a Constant

 Java Programming 41 Marlene Galea
 SEC Notes

Keyboard input

Sometimes we need our programs to accept input from the user. The Java JDK includes a class

called ‘Scanner class’ which has some very useful methods for inputting data through the

keyboard.

1. Import Scanner Utility

In order to use this class we have to import it using the following line:

2. Create a Scanner object

To use the Scanner utility, we need to create an object using the following syntax:

3. Reading data from keyboard into variables

The table below explains how to read data into the different variable types using the scanner
class.

Reading an integer int a = (input.nextInt());

Reading a double variable double a = (input.nextDouble());

Reading a float variable float a = (input.nextFloat());

Reading a String variable String a = (input.nextLine ());

Reading a short variable short a = (input.nextShort());

Reading a byte variable byte a = (input.nextByte());

Reading a long variable long a = (input.nextLong());

Reading a Boolean variable boolean a = (input.nextBoolean());

Reading a char variable

Characters cannot be read
directly so we read a string and
take the first letter only.

String a = (input.nextLine ());
char b = a.charAt(0)l

import java.util.Scanner; Imports the Scanner class so
we can then use its methods.

Type Variable name = new type ();

Scanner input = new Scanner (System.in);

To get user input we need to use the

system input stream
.

 Java Programming 42 Marlene Galea
 SEC Notes

Coding convention Rules
Naming classes, variables and constants

Programmers tend to stick to certain basic rules when naming their classes, variables and

constants as well as when structuring their programs. Following code conventions make

programs more understandable by making them easier to read. They can also give information

about the function of the identifier; for example, whether it is a constant or a class. This can be

helpful in understanding the code.

Identifier Type Rules for Naming Examples

Classes

Class names should be nouns in singular.

If there’s more than one word the first
letter of each internal word is capitalized.

Keep class names simple and descriptive.

class Test;

class MathsTest;

Methods

Methods names should be verbs

If there’s more than one word the first
letter is lowercase, with the first letter of
each internal word capitalized.

run();

runFast();

selectFromMenu();

Variables

Variable names should be short yet
meaningful.

The choice of a variable name should
indicate the intent of its use.

One-character variable names should be
avoided.

int num;

char letter;

float myWidth;

Constants

The names constants should be all
uppercase with words separated by
underscores ("_").

final int MIN_WIDTH = 4;

final int SPEED_LIMIT = 60;

Code blocks
Opening first curly bracket same line as construct and closing on a separate line.

class multiply {
 public static void main (String args[]){
 final int MULTIPLE = 5;
 System.out.println (1 * MULTIPLE);

 …
 }

 Java Programming 43 Marlene Galea
 SEC Notes

Arithmetic Operators
Basic Arithmetic

To do basic arithmetic in Java we use the following syntax:

Let’s take another look at the class ‘Window’

Adding a and b and storing answer in c. c = a + b;

Subtracting b from a and storing answer in c. c = a - b;

Multiplying a and b and storing answer in c. c = a * b;

Dividing a by b and storing answer in c. c = a / b;

Returns the remainder obtained after dividing a
by b. This is called modulus.

c = a % b;

c = a + b;

Work out a + b
and store the
answer in c

Basic Arithmetic in Java

class Window{
 float length;
 float breadth;

 public Window(){
 length = 1;
 breadth = 2;
 }

 public float getArea(){
 float area = length * breadth;
 return area;
 }

 public float getPerimeter(){
 float perimeter = (length+breadth) * 2;
 return perimeter;
 }
}

class winApp{
 public static void main (String args[]){

 Window kitchenWin = new Window();

 System.out.println("Length: "+kitchenWin.length);
 System.out.println("Breadth: "+kitchenWin.breadth);

 System.out.println("Area: "+kitchenWin.getArea());
 System.out.println("Perimeter: "+kitchenWin.getPerimeter());
 }
}

Can also be written in two
lines:

 float area;
area = length * breadth;

Returns the area to the
method that calls ‘getArea()’

Calls the constructor in class
Window

Outputs the value
returned by getArea for
the object kitchenWin

Here the backets () are
needed so that (length +

breadth) is evaluated before
the multiplication

Basic arithmetic in an application

 Java Programming 44 Marlene Galea
 SEC Notes

Unary Operators

The unary operators require only one operand; they perform various operations such as

incrementing/decrementing a value by one, negating an expression, or inverting the value of

a boolean.

The first two below are examples of unary operators:

Operator This is… …equivalent to Operation

++ n++ n = n + 1 Add 1

-- n-- n = n - 1 Subtract 1

+= n+=x n = n + x Addition

-= n-=x n = n - x Subtraction

= n=x n = n * x Multiplication

/= n/=x n = n / x Division

%= n%=x n = n % x Remainder

The Math Class

The Math is one of the libraries or classes found in the JDK. It has a number of methods and

the following are some of the more useful:

Method Description

abs(int x) Returns the absolute value of x

pow(int y, int x) Returns y to the power of x.

sqrt(double x) Returns the square root of x.

random() Returns a pseudo random number between 0 and 1.

round(float x) Returns x rounded up to the nearest integer.

ceil(double x) Returns the smallest whole number greater than or equal to x.

floor(double x) Returns the largest whole number less than or equal to x.

 Java Programming 45 Marlene Galea
 SEC Notes

Whenever we use any of these methods we have to first include the class name ‘Math’

because these are static methods.

These both perform the same function and output ‘3.0’.

What are static methods?

Static methods use no instance variables of any object of the class they are defined in. Static methods
typically take all the data from parameters and compute something from those parameters, with no
reference to variables. This is typical of methods which do some kind of generic calculation. A good
example of this are the many utility methods in the predefined Math class.

int x = 9;

System.out.println (Math.sqrt(x));

System.out.println (Math.sqrt(9));

class MathClass {
 public static void main (String args[]){
 int x = 9;
 System.out.println(Math.sqrt(x));
 }
}

import static java.lang.Math.*;

class MathClass {

 public static void main (String args[]){
 int x = 9;
 System.out.println(sqrt(x));
 }
}

The class name ‘Math’ has to
be included in every

instruction that makes use of
a method in it

When we import all methods
in the class (using .*), we can
then use the methods in that
class without including the
name of the class (Math)

every time.

Importing a class with all its methods

Calls method ‘sqrt’ in class
Math and passes it the

value 9

Passes the variable x to the
method sqrt. x is an

integer and has the value 9
in it

 Java Programming 46 Marlene Galea
 SEC Notes

Conditional transfer: If, if-else and switch

Sometimes we need our program to do a

different thing, depending on a condition. For

instance in the example shown here we would

like our program to output ‘Pass’ if mark is

greater than 49 and otherwise output ‘Fail’.

Therefore a programming language needs to

allow us to create branching instructions in

order to implement decisions.

The if statement
The if statement is used when we need to route program execution through one of two paths:

to take an action or to take no action.

if (condition) Statement/s;

if (mark>49) System.out.println (“Pass”);

if (condition) Statement/s;

if (mark>49) {
 System.out.println (“Pass”);
 System.out.println (“Well Done!”);
}

Mark = 70

Mark > 49? Output ‘Pass’

Output ‘Fail’

Branching or decision instructions

Basic Structure of the if statement

Mark = 70

Mark > 49?

Output ‘Pass’

True

False

int mark = 70;
if (mark>49){
 System.out.println ("Pass");
 System.out.println ("Well Done");

}

To execute 2 or more
lines IF the condition

is true we need to
enclose these lines in

{ }

If statement
example

False

True

 Java Programming 47 Marlene Galea
 SEC Notes

The if-else statement

Very often we have a situation where if a condition

is true we want to execute one set of instructions

and if it is false we want to execute another set of

instructions. This is where the if-else statement is

used.

Here we have the flowchart and code for

representing the situation where if the mark is

greater than 49 we output ‘Pass’ and if it’s not we

output ‘Fail’

The table below shows that in order to execute 2 or

more lines in a branching instruction, we need to enclose these lines in { }

if (condition) Statement/s; else Statement/s;

if (mark>49) System.out.println (“Pass”); else System.out.println (“Fail”);

if (condition) Statement/s; else Statement/s;

if (mark>49) {
 System.out.println (“Pass”);
 System.out.println (“Well
 Done!”);
}

else

{
 System.out.println (“Fail”);
 System.out.println (“Poor!”);
}

Therefore the generic structure for an if-else statement is as

shown here:

Basic Structure of the if-else statement

Flowchart for if-then else branching

Mark = 70

Mark > 49? Output ‘Fail’

Output ‘Pass’

False

True

If (condition) {
 statement/s
}
else {

statement/s
}

 Java Programming 48 Marlene Galea
 SEC Notes

Logical operators

Conditional statements, like the if statement jump to a section of code depending on the

result of a condition. So far we have seen simple conditions (e.g. mark > 49). The following

is a list of simple and compound logical expressions:

Operator Meaning Use Explanation

! unary not if (mark !=100)

 System.out.println(“Aim Higher”);

Outputs ‘Aim Higher’ if the
mark is not 100.

&& and if (mark>49) && (mark<60)

 System.out.println (“Grade C”);

Outputs Grade C if the
mark is between 50 and 59.

|| or if (name = “Ian”) || (name = “ian”

 System.out.println (“Ian found”);

Outputs ‘Ian found’ if the
name is ‘ian’ or ‘Ian’.

== equal to if (mark == 100)

 System.out.println ("Well
Done");

Outputs ‘Well Done’ if the
mark is 100.

!= not equal to if (mark != 0)

 System.out.println ("Not zero");

Outputs ‘Not zero’ if the
mark is not 0.

> greater than if (mark>49)

 System.out.println(“Pass”);

Outputs ‘Pass’ if mark is 50
or greater.

>= greater or
equal

if (mark>=49)

 System.out.println (“Pass”);

Outputs ‘Pass’ if mark is 50
or greater.

< smaller than If (mark<50)

 System.out.println (“Fail”);

Outputs ‘Fail’ if marks is
less than 50 (49 or less).

<= smaller or
equal

If (mark <=49)

 System.out.println (“Fail”);

Outputs ‘Fail’ if mark is less
than 50 (49 or less).

Example

Let’s say we have a program that randomly generates two integers a and b and outputs

whether the first integer is a factor of the second.

Note: if it is a factor there will be no remainder when we divide b by a. So we will use modulus

(c = b %a) here.

 Java Programming 49 Marlene Galea
 SEC Notes

Nested-if

A nested if statement is and if construct present inside the body of another if construct.

import static java.lang.Math.*;
class Factors{
 public static void main (String args[]){
 int c;

 int a = (int)(100.0 * random()) + 1;
 int b = (int)(10.0 * random()) + 1;

 c = a % b;

 if (c == 0) {
 System.out.println(b + " is a factor of " + a);
 }
 else {
 System.out.println(b + " is NOT a factor of " + a);
 }
 }
}

We import all methods
in the Math class (using

.*) so we can use its
methods without

including the name of
the class (Math) every
time. Here we will use
the ‘random’ method.

This line generates a

random number from 1
to 100, converts it to

integer and stores it in
integer variable a.

Divides a by b and

stores the remainder in
c

Outputs b is a factor of
a if the remainder is 0

Outputs b is a factor of

a if the remainder is
not 0

Finding if one randomly generated number is a factor of a second randomly generated number,

class NestedIf {
 public static void main (String args[]){
 int mark = 70;
 float average = 65;

 if (mark>50){
 if (average > mark){
 System.out.println ("Pass but below average");
 }
 else{
 System.out.println ("Pass. Mark above average");
 }
 }
 else{
 System.out.println ("Fail!");
 }
 }
} Nested-if

 Java Programming 50 Marlene Galea
 SEC Notes

The Switch Statement

Sometimes our choice is not between two things as with ‘Pass’ and ‘Fail’. Let’s say we have a

program menu that will take execution to a different part of a program depending on the

user’s menu choice. In this case it would be too cumbersome to implement the selection using

ladders of if statements.

For such multi-way branching, the switch statement is better suited.

Using method parameters
The declaration for a method or a constructor declares the number and the type of the

arguments for that method or constructor. The method getDay has one parameter dayNo

which is an integer number. The parameters are used in the method body and at runtime will

take on the values of the arguments that are passed to it by the method that calls the method

getDay.

switch (expression){
case 1: {
 statement/s;
 break;
 }
case 2: {
 statement/s;
 break;
 }
default: {
 statement/s;
 }

}

The switch compares the value
of the expression with each of

the values in the case
statements

Statements to be executed if

‘expression’ is ‘1’

The default statement if
optional and is executed only
if none of the case constants

matches the expression.
If no statement matches and

there is no default expression,
nothing happens.

Structure of the switch statement

String getDay(int dayNo){
}

The method getDay has the parameter
dayNo which is an integer number. At
runtime the values that are passed by the
method calling the method getDay will e
passed to the parameter dayNo.

The switch compares the value
of the expression with each of

the values in the case
statements

 Java Programming 51 Marlene Galea
 SEC Notes

Parameters refers to the list of variables in a method declaration.

Arguments are the actual values that are passed in when the method is invoked. When you

invoke a method, the arguments used must match the declaration's parameters in type and

order.

Let’s say we are dealing with a calendar application that has a method to convert the numbers

1 to 7 into the equivalent day of the week. This could be successfully implemented using a

switch statement.

class Calendar{
 public static void main (String args[]){

 DayOfWeek today = new DayOfWeek();

 int dayNo = 5;

 today.getDay(dayNo);
 System.out.println ("Today it is " + today.day);
 }
}

public class DayOfWeek{

 int hours;
 String day;

 String getDay(int dayNo){
 switch (dayNo){
 case 1: {
 day = "Monday";
 break;
 }
 case 2: {
 day = "Tuesday";
 break;
 }
 case 3: {
 day = "Wednesday";
 break;
 }
 case 4: {
 day = "Thursday";
 break;
 }
 case 5: {
 day = "Friday";
 break;
 }
 case 6: {
 day = "Saturday";
 break;
 }
 case 7: {
 day = "Sunday";
 break;
 }
 default: { day = "Invalid day";}
 }
 return day;

 }
}

A switch statement being used to convert the
numbers 1 to 7 into the equivalent dy of the

week.
The method getDay receives a value for dayNo

from the method that calls it.

 Java Programming 52 Marlene Galea
 SEC Notes

Loops
Sometimes we have one or more instructions that we would like the system to execute a

number of times, usually until a condition is met or until they have been executed a given

number of times. This is implemented using a loop.

Java offers us the following three looping constructs: for, while, do-while

The for loop

The for loop is used when, before we start executing the loop, we know how many times we

want to repeat the loop.

for (initialization ; condition ; iteration)

for (i = 0 ; i<10 ; i++)

For (initialization; condition; iteration){
 statement/s;
}

The iteration part that
increments (i++) or
decrements (i--) the variable
each time the program loops

Initialises the start of the
loop. E.g. i = 0

The condition to be tested.
E.g. i <10

The statement/s to be
looped.

class ForTest{
 public static void main (String args[]){

 int x;

 for (x=1; x<=10; x++)
 System.out.println("x=" +x);

 }

} When only 1 statement is

being looped, { } are not
needed.

Using a for loop to output x = 1..x =10

 Java Programming 53 Marlene Galea
 SEC Notes

While and do..while

The while and do-while loops are both conditional loops: this means they loop until a particular

condition is met. When a program is being created it is not always clear how many times the

loop will need to be executed. Think for instance of a ‘guessing game’: the user may guess

immediately, but he may guess after two tries or after a 100 tries…so the looping statement in

such a game needs to be implemented using an indeterminate loop.

Statement/s

Is condition
true?

- The do..while Loop, checks the condition after
executing the looping statement/s.

- If the condition is immediately satisfied the
looping instructions still execute at least once.

- The do..while loop is executed 1 or more times.

Statement/s

Is condition
true?

- The While Loop, checks the condition before
executing looping statement/s.

- If the condition is immediately satisfied the
looping instructions won’t be executed at all.

- The while loop is executed 0 or more times.

False

False

True

True

import java.util.Scanner;

class Menu{

 public static void main (String args[]){
 Scanner input = new Scanner (System.in);
 int choice;

 do {
 System.out.println ("MENU");
 System.out.println ("1. Enter Students
 Details");
 System.out.println ("2. View Student
 Details”);
 System.out.println ("3. Exit");
 System.out.print ("Enter choice:");

 choice = (input.nextInt());
 } while (choice!=6);
 }
}

The While Loop. The Do..While Loop.

import java.util.Scanner;

class WhileExample{

 public static void main (String args[]){
 Scanner input = new Scanner (System.in);
 int num = 7;

 System.out.print ("Enter your guess: ");
 int guess = (input.nextInt());

 while (guess != num){
 System.out.println();
 System.out.println ("Wrong guess. Retry");
 System.out.print ("Re-enter guess: ");
 guess = (input.nextInt());
 }

 System.out.println ("Correct guess");
 }
}

 Java Programming 54 Marlene Galea
 SEC Notes

 Take a closer look at the syntax of these two loops:

Nested Loops

A nested loop is a loop within another loop.

The following example shows the use of a nested for loop to create the output patterns shown

here.

class NestedLoop{
 public static void main (String args[]){
 int i;
 int x;

 for (i = 1; i < 6 ; i++){
 for (x = 1; x <= i; x++){
 System.out.print ("*");
 }
 System.out.println ();
 }
 }
}

A nested loop: a for loop inside another

while (guess != num){
 System.out.println();
 System.out.println ("Wrong guess. Retry");
 System.out.print ("Re-enter guess: ");
 guess = (input.nextInt());
 }

If the guess entered is not
equal to the value of num
the loop will be executed
again.

do {
 System.out.println ("MENU");
 System.out.println ("1. Enter Students
 Details");
 System.out.println ("2. View Student
 Details”);
 System.out.println ("3. Exit");
 System.out.print ("Enter choice:");

 choice = (input.nextInt());
 } while (choice!=6);

These lines are executed
BEFORE the condition
below is checked. They will

 Java Programming 55 Marlene Galea
 SEC Notes

Arrays
An array is a group of related data items (variables) of the same type that are referred to with

a common name.

Let’s say the following is an array of 5 marks: 70, 85, 65, 80 and 75

MarkList

Index
(door number)

0 1 2 3 4

Element
(item in the house)

70 85 65 80 75

To refer to a particular element in the array we need to use the array’s name and that element’s

index: Marks[4] contains the number 75.

Using arrays

Declaring an array

The syntax for declaring an array in Java is the following:

Assigning an array

Declaring and assigning an array in one line:

Using array variables

Outputting a single item in an array:

Given the array shown above, the following line outputs ‘80’.

Inputting a single item into an array

Using an array in a for loop

int[] markList; Creates an array variable called
marksList that will hold integers only.

markList = new int [5]; Creates an array and assigns it to array
variable

array-variable = new type [size];

int[] markList = new int [5];

System.out.println (markList[3]);

markList[3] = (input.nextInt());

 Java Programming 56 Marlene Galea
 SEC Notes

For loops are ideal for manipulating arrays as shown in the example below:

import java.util.Scanner;

public class TestMarks{

 Scanner input = new Scanner (System.in);

 int[] mark = new int[5];
 int i;

 public void enterMarks(){
 for (i=0;i<5;i++){
 System.out.print ("Enter mark: ");
 this.mark[i] = (input.nextInt());
 }
 }

 public void getAverage(){
 int t = 0;
 double average;

 for (i=0;i<5;i++){
 t = t + mark[i];
 }
 average = t/i;
 System.out.println ("The average is: " + average);
 }
}

class RunMarks{
 public static void main (String args []){
 TestMarks MathsTest = new TestMarks();
 MathsTest.enterMarks();
 MathsTest.getAverage();
 }
}

The Main program will call
the method enterMarks and
then getAverage so the array
will first be filled with values
in enterMarks and then their

average is calculated and
output in getAverage.

 Java Programming 57 Marlene Galea
 SEC Notes

Using a Third Party Class: The Keyboard Class

The Keyboard is a third party class used for data input. This is the listing of the Keyboard class:

import java.io.*;

public class Keyboard{

 public static String readString(){
 BufferedReader br;
 try{
 br = new BufferedReader(new InputStreamReader(System.in));
 return br.readLine();
 }catch (Exception e){

 }
 return null;
 }

 public static int readInt(){
 return Integer.parseInt(readString());
 }

 public static byte readByte(){
 return Byte.parseByte(readString());
 }

 public static short readShort(){
 return Short.parseShort(readString());
 }

 public static long readLong(){
 return Long.parseLong(readString());
 }

 public static float readFloat(){
 return Float.parseFloat(readString());
 }

 public static double readDouble(){
 return Double.parseDouble(readString());
 }

 public static char readChar(){
 return readString().charAt(0);
 }

 public static boolean readBoolean(){
 return Boolean.parseBoolean(readString());
 }

}

 Java Programming 58 Marlene Galea
 SEC Notes

However, as we’ve already seen, the great thing about Java is that we do not need to know

exactly how a class works as long as we know how to use it. In order to input data using the

keyboard class we use the following syntax:

Using the keyboard class

Syntax Use

String name = Keyboard.readString(); Reads a string from the keyboard and

stores it in variable name

int num1 = Keyboard.readInt(); Reads an integer from the keyboard and

stores it in variable num1.

byte num2 = Keyboard.readByte(); Reads a byte variable and stores it in

variably num2.

short num3 = Keyboard.readShort(); Reads a short value from the keyboard and

stores it in variable num3.

long num4 = Keyboard.readLong(); Reads a long value from the keyboard and

stores it in variably num4.

float num5 = Keyboard.readFloat(); Reads a float from the keyboard and stores

it in variable num5.

double num6 = Keyboard.readDouble(); Reads a double from the keyboard and

stores it in variable num6.

char ch = Keyboard.readChar(); Reads a character from the keyboard and

stores it in variable ch.

boolean tf = Keyboard.readBoolean(); Reads a Boolean value from the keyboard

and stores it in variable tf.

This table explains the use of the Keyboard Class to input primitive variable
types and strings. Therefore the keyboard class can be used instead of the

Scanner class in some of our programs.

 Java Programming 59 Marlene Galea
 SEC Notes

Appendix 1: Using third party classes in LeJOS
LeJOS is a firmware replacement for Lego Mindstorms programmable bricks. It includes a Java

virtual machine, which allows Lego Mindstorms robots to be programmed in the Java

programming language.

Simple LeJOS features

Feature Example Function

Import lejos.nxt.* import lejos.nxt.*; Will allow us to use the

LeJOS features

Using Sensors

UltrasonicSensor(SensorPort port)

assigning a new ultrasonic object

UltrasonicSensor us = new
UltrasonicSensor
(SensorPort.S1)

Creates ‘us’ a new instance

of Ultrasonic

getDistance() us.getDistance() Returns the distance to the

nearest object

LCD.drawString("Moving", 0, 0); LCD.drawString("Moving", 0, 0); Display on screen

Timer class

Timer.sleep (250); Timer.sleep (250); Using the sleep method in
the timer class to create a
delay. (passing 250 as a
parameter, hence delaying
by 250 milliseconds).

Motor class

regulateSpeed(boolean yes) Motor.B.regulateSpeed(true); Regulates motor speed (1-

900)

setSpeed(int speed), Motor.B.setSpeed(500); Sets the motor speed

forward() Motor.B.forward(); Rotates the motor forward

backward() Motor.B.backward(); Rotates the motor backward

stop(), Motor.B.stop(); Stops the motor

 Java Programming 60 Marlene Galea
 SEC Notes

 Java Programming 61 Marlene Galea
 SEC Notes

Here is an example LeJOS programme:

This program causes the NXT to:

First output ‘Moving’ on its LCD;

Then move forward with a speed of 500 until the ultrasonic sensor detects an object less

than 20 cm away.;

At this point it stops and then moves back for a short while.

import lejos.nxt.*;

public class MyProg {
 public static void main (String args []) throws Exception{
 int distanceToNearestObject = 500;
 UltrasonicSensor us = new UltrasonicSensor (SensorPort.S1);

 LCD.drawString("Moving", 0, 0);
 Timer.sleep (250);

 Motor.B.regulateSpeed(true);
 Motor.C.regulateSpeed(true);
 Motor.B.setSpeed(500);
 Motor.C.setSpeed(500);

 Motor.B.forward();
 Motor.C.forward();

 while ((distanceToNearestObject = us.getDistance()) >= 20){
 Motor.B.stop();
 Motor.C.stop();
 }
 Motor.B.backward();
 Motor.C.backward();
 Timer.sleep (50);
 }

}

A simple LeJOS program

 Java Programming 62 Marlene Galea
 SEC Notes

Appendix 2 – The String class
Useful methods in java.lang.String

Method Explanation

String.length();

Returns an integer

returns the number of characters in this string

String.toLowerCase()

Returns a String

returns a new string with all characters

converted to lowercase

String.toUpperCase()

Returns a String

returns a new string with all characters

converted to uppercase

String.equals(String);

Returns boolean

Returns true if string is equal to another string

String.charAt(index:int);

Returns a String

returns the character at the specified index

from this string

String substring(int beginIndex int endIndex)
To concat 2 strings

class String_Functions{
 public static void main (String args []){
 String password = ("Hello");
 String pword = ("Hello");
 boolean guessed;
 guessed = password.equals(pword);
 System.out.println ("Password guessed? " + guessed);
 int letters = password.length();
 System.out.println ("Password length is " + letters);
 char character = password.charAt(4);
 System.out.println ("The FOURTH letter in the password is " + character);
 String capitals = password.toUpperCase();
 System.out.println ("This is the password in capital letters " + capitals);
 String smalls = password.toLowerCase();
 System.out.println ("This is the password in small letters " + smalls);
 }
}

Using String class methods

 Java Programming 63 Marlene Galea
 SEC Notes

import java.util.Scanner;

public class Account{
 //Properties
 String name;
 String surname;
 String password;
 String username;
 boolean guessed;

 //Methods
 Scanner Input = new Scanner (System.in);

 public Account(){
 this.guessed = false;
 }

 public void changePassword(){
 System.out.print ("Enter New Password:");
 this.password = Input.next();
 System.out.print ("ConfirmPassword:");
 String pword = Input.next();
 if (this.password.equals(pword)){
 System.out.println ("Password Changed");
 }
 else{
 System.out.println ("Password does not match");
 }
 }

 public void guessPassword(){
 System.out.print ("Enter Password:");
 String userPword = Input.next();
 if (this.password.equals(userPword)){
 System.out.println ("Password Correct");
 this.guessed = true;
 }
 else{
 System.out.println ("Password Incorrect");
 }

 }

 public void newAccount(){
 System.out.print ("Enter name:");
 this.name = Input.next();
 System.out.print ("Enter surname:");
 this.name = Input.next();

 //generating username

 String subname = this.name.substring(1, 3);
 String subsurname = this.surname.substring(1,3);
 this.username = subname + subsurname;

 System.out.println ("Your new Username is" + this.username);
 System.out.println ("Your new Password is \'1234\'");
 }

}

Using String class methods in an
application tackling password protected

user accounts

 Java Programming 64 Marlene Galea
 SEC Notes

Appendix 3 – Simple GUI programs

Java supports graphics to enhance the looks of our applications. Here we will look at two

very simple ways you can include graphics in your application.

To do this we have to import the class JOptionPane using the line below:

Displaying text in a Dialog Box

The syntax to display ‘Game Over’ in a Dialog Box is:

The code below displays the following dialog box:

import javax.swing.JOptionPane;

JOptionPane.showMessageDialog(null, “Game Over”);

import javax.swing.JOptionPane;

class Graphics{
 public static void main (String args[]){
 JOptionPane.showMessageDialog(null,
 "Game Over!\n" +
 "Press 'Enter' to play again");
 }
}

Escape character \n used to display
text on multiple lines

Displaying multiple lines in a Dialog Bix

 Java Programming 65 Marlene Galea
 SEC Notes

Entering text in a Dialog Box

The syntax to display ‘Enter your name’ in a dialog box and then read the name into a string

variable is:

The code below displays the following dialog box:

String name = JOptionPane.showInputDialog(“Enter your name”);

The variable in which the entered name
will be placed.

public void mainMenu () throws Exception{
 String choices;

 choices = JOptionPane.showInputDialog(
 "MAIN MENU\n"+
 "1. Create New Test\n"+
 "2. Try Test\n"+
 "3. Get Grade and Rank\n"+
 "4. View Answers\n" +
 "5. Read Notes\n" +
 "6. Quit\n"+
 "Enter choice: \n");

 int choice = Integer.parseInt(choices);

 switch (choice) {
 case 1: enterQuestions();
 saveTest();
 break;
 case 2: tryTest();
 break;
 case 3: processMark();
 break;
 case 4: viewAnswers();
 break;
 case 5: readNotes();
 break;
 }
 }

Escape character \n used to
display text on multiple lines

Integer.parseInt() is a method
that converts Strings (here the
variable choices) to integer

Note the use of a switch
statement to deal with a menu
choice

A GUI Main Menu

 Java Programming 66 Marlene Galea
 SEC Notes

Appendix 4: Array of Objects
Java allows us to use an array to store objects.

Declaring an array of objects

Using an array of objects

We will now use an array of Person objects.

This is the Class Person that we used earlier

on. It now includes two methods:

- inPerson() – reads data into the

object variables of the object

passed to it

- outputPerson() – outputs the data in

the object variables of the object

passed to it.

We will therefore make an array of instances

of this class and have our array of objects

use these methods.

Person [] CleanerList = new Person[5];

Type (Name of the Class
the objects will be
instances of)

Array Name

Creates the array and
assigns it to array
variable

import java.util.Scanner;

class Person {
 String name;
 String surname;
 String address;
 String telNum;

 public void inPerson(){
 Scanner input = new Scanner (System.in);

 System.out.print ("Name: ");
 this.name = input.nextLine();
 System.out.print ("Surname: ");
 this.surname = input.nextLine();
 System.out.print ("Address: ");
 this.address = input.nextLine();
 System.out.print ("Tel. No.: ");
 this.telNum = input.nextLine();
 }

 public void outputPerson(){
 System.out.println (this.name);
 System.out.println (this.surname);
 System.out.println (this.address);
 System.out.println (this.telNum);
 }
 }
} The Person Class

Note the use of the ‘this’ keyword

 Java Programming 67 Marlene Galea
 SEC Notes

Now let’s take a look at the main method below which produces the output shown:

import java.util.Scanner;

public class School_System{

 public static void main (String args[]){

 Scanner input = new Scanner (System.in);
 System.out.print ("Enter number of new Cleaners: ");
 int y = input.nextInt();

 Person [] CleanerList = new Person[y];

 for (int i = 0; i<y; i++){
 CleanerList[i] = new Person ();
 System.out.println();
 CleanerList[i].inPerson();
 }

 System.out.println();
 System.out.println();

 System.out.println ("List of Cleaners");
 for (int i = 0; i<y; i++){
 CleanerList[i].outputPerson();
 System.out.println();
 }
 }
}

The number of elements in the array
is being determined by the user.

The for loop that will help us go
through the array. Remember that
the first array element is number 0.

Creating the object CleanerList[i]

Calling the method inPerson() for
the object CleanerList[i]

Using a for loop to go through the
array, this time calling the method
outputPerson() for each element in
the array.

Using an array of objects

 Java Programming 68 Marlene Galea
 SEC Notes

Appendix 5: Text Files
Java can read lines of text from a file and write lines of text to a text file.

Creating a text file

To import the necessary reading and writing classes we use:

Next we create a file object: and associate it with a file name:

Saving to a text file

When we save to a text file we use the keyword ‘write’.

Initialising an object (writer) to write lines to a text file:

Writing a line of text to a text file:

Getting data from a text file

When we get data from a text file we use the keyword ‘read’.

Initialising an object (reader) to read lines from a text file:

Reading a line of text from a text file:

import java.io.*;

BufferedWriter writer = new BufferedWriter(new FileWriter(test, true));

 BufferedReader reader = new BufferedReader(new FileReader(test));

writer.write(Test[i].question);

writer.newLine();

Test[i].question=(reader.readLine());

File test = new File("test.txt");

The name of the text file

Our file object is called
‘test’.

 Java Programming 69 Marlene Galea
 SEC Notes

Exception handling

When using text files, it is possible that the file we are trying to read from or write to is not

found (e.g. if it is saved on a Pen Drive which is not available right then). This would cause our

program to throw an input/output exception. Therefore we include ‘throws IOException’ in

the signature of the method that will call methods in the io class. The compiler will complain

if we don't do this.

CAL Quiz Example

We will now look at a cimple Quiz application that makes use of the class Question shown

here.

public static void main (String args[])throws IOException {

import java.util.Scanner;

public class Question{
String question;
String answer;

 Scanner input = new Scanner(System.in);

 public void enterQuestion(){
 System.out.print ("Enter question:");
 this.question = input.nextLine();
 System.out.print ("Enter answer:");
 this.answer = input.nextLine();
 }

 public boolean askQuestion(){
 System.out.println (this.question);
 System.out.print ("Answer: ");
 String userAnswer = input.nextLine();
 if (userAnswer.equals(this.answer)){
 return true;
 }
 else{
 return false;
 }
 }
}

The class Question will be used to create
instances of questions. Each of these objects
will have a question and an answer and will

have two methods ‘enterQuestion() and
askQuestion()

Object,askQuestion() returns ‘true’
if the user’s answer is correct,
otherwise it returns ‘false’

Method enterQuestion() is used to
enter a question and correct
answer for each Question object

 Java Programming 70 Marlene Galea
 SEC Notes

import java.io.*;
import java.util.Scanner;

class TextFiles{

 public static void main (String args[])throws IOException {
 Scanner input = new Scanner(System.in);
 Question[] Test = new Question[5];
 File test = new File("test.txt");
 int choice = 0;

 do{
 System.out.println ("MAIN MENU");
 System.out.println ("1. Enter Test Questions");
 System.out.println ("2. Try Test");
 System.out.println ("3. Exit");
 System.out.print ("Enter choice:");
 choice = input.nextInt();

 switch (choice){
 case 1:{
 for (int i=0;i<5;i++){
 System.out.println();
 Test[i] = new Question ();
 Test[i].enterQuestion();
 System.out.println();
 }
 BufferedWriter writer = new BufferedWriter(new FileWriter(test, true));
 for (int i = 0; i<5; i++){
 writer.write(Test[i].question);
 writer.newLine();
 writer.write(Test[i].answer);
 writer.newLine();
 }
 writer.close();
 break;
 }

 [This method is continued overleaf…]

Writes the contents of the array into
the text filel, 1 element at a time.

Calling the method enterQuestion
for Test[i]

It is important to close the file

 Java Programming 71 Marlene Galea
 SEC Notes

When the user runs the above application:

• The Main Menu is displayed allowing the user to enter test questions, try the test or exit

the application.

• When the user enters test questions these are entered into the array and then saved onto

the text file

 case 2:{
 int mark = 0;
 BufferedReader reader = new BufferedReader(new FileReader(test));
 for (int i = 0; i<5; i++){
 Test[i] = new Question ();
 Test[i].question=(reader.readLine());
 Test[i].answer=(reader.readLine());

 System.out.println();
 if (Test[i].askQuestion()){
 mark = mark + 1;
 }
 }
 reader.close();
 System.out.println ("Your mark is:" + mark + "/5");
 System.out.println();
 break;
 }

 case 3:{
 System.out.println();
 System.out.println ("Exiting");
 break;
 }
 }
 } while (choice != 3);
 }

}

A CAL Quiz Application using text files

Repeatedly displays the Main Menu
for the user to choose what to do
next, until the choice is 3 (Exit)

Reads the questions and answers
from the text file into the array Test,
one element at a time

It is important to close the file

 Java Programming 72 Marlene Galea
 SEC Notes

• When the user tries the test, the questions and answers are copied from the text file and

into the array Test [], then the method askQuestion() is called for each element in the

array.

The output given by the above application is shown here:

Entering Test
Questions and

answers to make a
test

Trying the Test
and then

choosing the option to Exit

The Text File
called ‘test’

that is created
by this

application.

