Programming

in Java

An Object Oriented Approach
To SEC Level

By Marlene Galea
Head of Department Computing

PROGRAMMING IN JAVA

INTRODUCTION TO PROGRAMMING 6
WHAT IS AN ALGORITHM? 6
WHAT IS A PROGRAMMING LANGUAGE? 6
WHAT IS A PROGRAM? 6
ICON-BASED PROGRAMMING 7
FEATURES OF ICON-BASED PROGRAMMING 7
TEXT-BASED PROGRAMMING: INTRODUCTION TO JAVA 8
WHAT DETERMINES THE CHOICE OF A PROGRAMMING LANGUAGE? 8
WHAT IS JAVA? 8
FEATURES AND BENEFITS OF JAVA 9
DISADVANTAGES OF JAVA 9
GETTING JAVA ON YOUR COMPUTER 10
WHAT YOU WILL NEED TO DEVELOP AND RUN JAVA APPLICATIONS 10
INSTALLING THE JDK (JAVA DEVELOPMENT KIT) 11
USING BLUEJ TO CREATE JAVA PROGRAMS 11
DOWNLOADING BLUEJ 12
STARTING A PROJECT 12
USING JCREATOR TO CREATE JAVA PROGRAMS 11
DOWNLOADING JCREATOR 12
STARTING A PROJECT 12
RUNNING A JAVA PROGRAM 13
WHAT HAPPENS WHEN WE RUN A JAVA PROGRAM? 13
WHAT IS PLATFORM INDEPENDENCE? 13
TWO STEP TRANSLATION 13
HOW DO WE RUN A JAVA PROGRAM? 14
.CLASS AND .JAVA FILES FILES 14
WHAT IS A JAVA APPLET? 15
e Java Programming 2 Marlene Galea

=2 SEC Notes

—

OBJECT ORIENTED PROGRAMMING

15

WHAT ARE CLASSES AND OBJECTS? 15
THREE PRINCIPLES OF OBJECT ORIENTED PROGRAMMING 16
INHERITANCE 16
POLYMORPHISM 17
ENCAPSULATION 17
YOUR VERY FIRST CLASS 18
OBJECT PROPERTIES (OBJECT VARIABLES) 18
WRITING METHODS: OBJECT ACTIONS 19
STRUCTURE OF A METHOD 19
THE MAIN CLASS AND MAIN METHOD 20
MAIN METHOD DECLARATION 20
CREATING INSTANCES OF A CLASS 21
CALLING A METHOD 23
THE CONSTRUCTOR METHOD 24
GENERAL STRUCTURE OF A CLASS 25
SCREEN OUTPUT IN JAVA 26
PRINT/PRINTLN 26
PRINTING LITERALS 27
PRINTF 27
CHANGING THE OUTPUT IN JCREATOR 28
TO OBTAIN THE OUTPUT IN THE SAME WINDOW 28
TO OBTAIN THE OUTPUT IN A NEW WINDOW 29
CHANGING THE OUTPUT WINDOW PROPERTIES 29
HOW TO DISPLAY LINE NUMBERS IN JCREATOR 30
COMMENTS IN JAVA PROGRAMS 30
VARIABLES 31
WHAT ARE VARIABLES? 31
VARIABLE TYPES — PRIMITIVE TYPES 31
VARIABLE TYPES - STRINGS 32
THE STRING CLASS 32
VARIABLE NAMES 32
DECLARING VARIABLES 33
DECLARING A SINGLE VARIABLE 33
DECLARING A LIST OF VARIABLES 34
DECLARING A VARIABLE AND SIMULTANEOUSLY PUTTING A VALUE IN IT 34
SCOPE OF VARIABLES 35
VARIABLE INITIALISATION 36
DYNAMIC INITIALISATION 36
VARIABLE TYPES AND VALUE RANGES 37
AUTOMATIC TYPE CONVERSION 38
VARIABLE TYPE COMPATIBILITY CHART 39
TYPE CASTING 39

< Java Programming
=~ SEC Notes

=4

Marlene Galea

FINAL (CONSTANT) VARIABLES

40

DECLARING A CONSTANT 40
KEYBOARD INPUT 41
1. IMPORTING THE SCANNER UTILITY 41
2. CREATING A SCANNER OBJECT 41
3. READING DATA FROM KEYBOARD INTO VARIABLES 41
CODING CONVENTION RULES 42
NAMING CLASSES, VARIABLES AND CONSTANTS 42
CODE BLOCKS 42
ARITHMETIC OPERATORS 43
BASIC ARITHMETIC 43
UNARY OPERATORS 44
THE MATH CLASS 44
CONDITIONAL TRANSFER: IF, IF-ELSE AND SWITCH 46
THE IF STATEMENT 46
THE IF-ELSE STATEMENT 47
LOGICAL OPERATORS 48
NESTED-IF 49
THE SWITCH STATEMENT 50
USING METHOD PARAMETERS 50
LOOPS 52
THE FOR LOOP 52
WHILE AND DO..WHILE 53
NESTED LOOPS 54
ARRAYS 55
USING ARRAYS 55
DECLARING AN ARRAY 55
ASSIGNING AN ARRAY 55
USING ARRAY VARIABLES 55
USING AN ARRAY IN A FOR LOOP 55
USING A THIRD PARTY CLASS: THEY KEYBOARD CLASS 57
USING THE KEYBOARD CLASS 58

(s Java Programming 4
=2 SEC Notes

—

Marlene Galea

APPENDIX 1: USING THIRD PARTY CLASSES IN LEJOS 59
SIMPLE LEJOS FEATURES 59
APPENDIX 2 — THE STRING CLASS 62
USEFUL METHODS IN JAVA.LANG.STRING 62
APPENDIX 3 — SIMPLE GUI PROGRAMS 604
DISPLAYING TEXT IN A DIALOG BOX 64
ENTERING TEXT IN A DIALOG BOX 65
APPENDIX 4: ARRAY OF OBJECTS 66
DECLARING AN ARRAY OF OBJECTS 66
USING AN ARRAY OF OBJECTS 66
APPENDIX 5: TEXT FILES 68
CREATING A TEXT FILE 68
SAVING TO A TEXT FILE 68
WRITING A LINE OF TEXT TO A TEXT FILE: 68
GETTING DATA FROM A TEXT FILE 68
READING A LINE OF TEXT FROM A TEXT FILE: 68
EXCEPTION HANDLING 69
CAL QuiZ EXAMPLE 69

e Java Programming
=2 SEC Notes

—

Marlene Galea

Introduction to Programming

Computers can only perform very simple operations like

comparing two values or adding two numbers. They perform
M complex tasks by carrying out large numbers of simple operations
M after each other. Therefore computerised tasks need to be

specified in perfect detail by programs.

C=A+8B

What is an algorithm?

M An algorithm is a step by step sequence of instructions designed
to solve a problem.

End

Algorithms can be expressed in different ways including structure

Flowchart for an charts, pseudocode, flowcharts and programming languages.
algorithm to input 2
numbers and output

their sum.

What is a programming language?
A programming language involves a vocabulary
and set of grammatical rules for instructing a

computer to perform specific tasks.

There are many programming languages and
many means of creating a program. Examples of
programming languages include Cobol, C# and

Java.

What is a program?

A program is an organized list of instructions that the
computer can handle and when executed, causes the

computer to behave in a predetermined manner.

Q'm Without programs, computers are useless.

s Java Programming 6 Marlene Galea
=2 SEC Notes

—_—

Icon-based programming

Certain programming interfaces make creating programs easier because they allow us to
create programs using icon-based programming. NXT-G developed for Lego Mindstorms

Robotics (shown below) offers an example of icon-based programming.

Common Untitled-1

Icons that can —\ {‘.‘f? — Program
be dragged —_— created by
onto the dragging
working area to 0 sact d components
make a program @JFDC&GF I C1<% @) from the toolbar
@) 1 & @) ET_] Mol B il .
) R on the side

S

BEE

Icon properties |
can be set here

in order to fine l =)
tune the E %) cono e (J|KEp ©1 0z O3 Os
programs 5 Sanson Sr. W acions ©) presed
created 0] Released
- 0 2] show: 0[5) counter © 4] Bumped

The Lego Mindstorms NXT Programming Interface

Other icon based programming interfaces include that of ‘Scratch’

Spritel

Scripts

move steps

turn & degrees

turn & degrees

play drum CTR9 for beats
point in direction EIRd turn & degrees

point towards

Programming
using Scratch

gotox: @y: @

Features of Icon-based programming
e Generally easier and more intuitive;
e One can create programs faster;
e Programs may require more system resources to run than equivalent text-based

programs.

((Java Programming 7 Marlene Galea
= SEC Notes

Text-Based Programming: Introduction to Java

What determines the choice of a programming language?

Every language has its strengths and weaknesses. The choice of language depends on:
e the type of computer the program is to run on;
e what sort of program it is;

e the expertise of the programmer.

What is Java?

Java was originally developed by James Gosling at Sun Microsystems (now a subsidiary of
Oracle Corporation) and was first released in 1995. Java is a third generation, general purpose
language like Pascal, C and C#. It is one of the most important programming languages and

is widely used: from making application software to web applications.

Pro : 5 1 0 all
bublic st
. Scann:;w Void mainMeny () throws g
' ' Syorme input = pey Scanner {Syst oy tomt
- Out.prine] " -)
. o n ("MAIN MENU™"
Out.pringlp ;
1.
. ; .] System.out prrintln (‘ 2 et ra ey
o out prane i3 s Add Entries in dlrel;t <
. - - ; : -] Srotamaut yimein (73 Append Ney Entries :ouéy !
System out gy .
brintin (rg Y T
‘ . : Syoramout Search p T b,
rrinein | ¥ Telephone
i 6 Quitr -
- - : . - czjtem.uut.prmt ("Enter choIt !)
. systl.:: = (inpuc.nextlnt(.\)' e
-out, ’
. ' t.printin [P
| | - Switch (choice) ¢
case 1: dlsplayAll(}:
break;
case 2; nemEncriEsU;
break;
A Text-Based Java Application E—
Noughts andCrosses v1.0 —~

Player 2 Turn - Press a Cell
—
ar .
P a.aut. i .
e o
Gria WOt ld; 1
int player Filled = o

x
1istens
int huptensih e
win = 7
nolean » n
’ pe dﬁclarad here
e must RE ©F
these W

4 by The
511 e used Y
e it W

click
1) ¢ cor @ button
wolic void creavety 1y 1istens O a
v ontinuous

. that)
stener BT LT con label

joa i s the r i)l
'/ and updates v Coew gcuonhwcen? (‘
! pucronclick = o ot ionEvent ae
A ©ionbisterer cmnpeff“mem
o a ac
o voi
puhll

O

A Graphic-Based Java Application

((Java Programming 8
=2 SEC Notes

=4

Marlene Galea

Features and Benefits of Java

e Portability.: Java is platform independent. Java programs are
portable between different types of computers that have a JVM
(Java Virtual Machine). This is because Java programs are first

translated into bytecode which can then run on any machine that

has a Java interpreter (which is part of the JVM). &

e Object Oriented: Because it is an object oriented language, Java allows flexible modular

programming and code reusability through encapsulation, inheritance and polymorphism.
e Java Programs are smaller in size so they are simple, economic and efficient.

e Robust: Java is robust (reliable) because it emphasises early checking for errors. Java
compilers can detect problems that would first show up during execution time in other

languages. For instance Java has a runtime exception-handling feature.
e Secure: Java prohibits viruses etc because code runs inside the virtual machine.

e Easy to write, compile and debug: Java is easier than other object oriented programming

languages like C++ because it uses automatic memory allocation and garbage collection.

e Java is distributed: it makes distributed computing easy as writing networked program is

easy. Distributed computing involves several computers on a network working together.

e Java is multithreaded: Multithreading is the ability to perform several tasks independently

and simultaneously within a program.

Disadvantages of JAVA

e Performance: Java is an interpreted language, so because of the translation process,
programs written in Java have speed issues. However the speed of
a Java program is good enough for most interactive applications
(because in interactive applications the CPU is waiting for user
input most of the time anyway so the speed of translation will not

be the main bottle neck).

\./

s Java Programming 9 Marlene Galea
=2 SEC Notes

—

Getting Java on your computer

What you will need to develop and run Java applications

In order to develop and run Java applications you will need a JDK (Java Development Kit) and
you should also get an IDE (Integrated Development Environment). The following explains

these terms and their role.

Explaining JDK, JRE, JVM and IDE

Java Development Kit (JDK)

] A JDK is a Java software development environment from Sun. Each
' = new version of the JDK adds features and enhancements to the
4| language. When Java programs are developed under the new version,
5| the Java interpreter (Java Virtual Machine) that executes them must
also be updated to that same version.
A JDK includes the JRE, Java compiler, debugger and other tools for
developing Java applets and applications

Other tools for developing Java applets & applications

Java Runtime Environment (JRE)

The Java Runtime Environment (JRE) is what you get when you
download Java software. The The JRE is the runtime portion of Java
software, which is all you need to run it in your Web browser.

The JRE is an implementation of the JVM, all the Java platform core
classes and supporting libraries

Java Virtual Machine (JVM)

Java platform core
classes

The Java Virtual Machine (JVM) is software that
converts the Java intermediate language (bytecode)
into machine language and executes it.. AJVM s a
Java operating program that runs Java programs. It
creates an environment for executing Java code
Supporting Java that behaves like a computer separate from the one
platform libraries it is running on.

Integrated Development Environment (IDE)

An IDE e.g. BlueJ or JCreator is used to edit, compile and debug Java code.

s Java Programming 10 Marlene Galea
=2 SEC Notes

Installing the JDK (Java Development Kit)

Download the JDK from:

7 [=) 722 5& Downloads

Go to the URL given above.

F VWVIW.Oracle.comytechinetworkjava, Dads/naex.nem
Free Hotmail (§) Gov.mt - Informazzjo... (§) Government Email §% Skola - Bringing Schoo.... () Windows Marke = . \
= =
Services Solutions Downloads Store Support Training Partners About
work Java Java SE
Oveniew | Downloads || Documentation || Community || Technologies || Training
Java SE Downloads
Latest Release Next Release (Early Access) Embedded Use Previous Releases
& Suite
avafx | € NetBeans ‘ =2 Java EE ‘
va
it
Java Platform (JDK) 7u: JavaFX 2.0 JDK 7 + NetBeans Bundle JDK 7 + Java EE Bundle

Select '‘Download’

Accept License Agreement

3

va SE Development Kit 7u1

[O Accept License Agreement] © Decline License Agreement

Product / File Description
Linux x86
Linux x86
Llnux x64

Select product to download

Solaris x88
Solaris SPARC
Solaris SPARC
Solaris SPARC 64-bit
Solaris SPARC 64-bit
Solaris x64

Solaris x64

Vindows x86
Windows x64

File Size Download

77.27 MB ¥ jdk-7ul-linux-i586.rpm
9217 MB ® jdk-7u-linux-i586 tar.az
77.91MB ¥ jdk-7u1-linux-x84.rpm

90.57 MB ¥ jdk-7ul-linux-x64 tar.az
154.78 MB ¥ jdk-7u1-solaris-i586.tar.Z
9475 MB ¥ jdk-7u1-solaris-i586.tar.qaz
157.81 MB ¥ jdk-7u1-solaris-sparctar.Z
99.48 MB ¥ jdk-7u1-solaris-sparctar.az
16.27 MB ¥ jdk-7u1-solaris-sparcvd.tar.Z
12.37 MB ¥ jdk-7u1-solaris-sparcvd.tar.az
14.68 MB ¥ jdk-7ul-solaris-xG4.tar.Z

38 MB ¥ jdk-7u1-solaris-x64.tar.az

=20 WD i UR=7U T=WITTUUWS-TUO0 . EXE

80.24 MB ¥ jdk-7ul-windows-x64.exe

Downloading BlueJ

Download and install from: http://www.bluej.org/

(You may choose to download both BlueJ and the JDK from

here).

Starting a Project

Select Project>New Project

Using BlueJ to create Java programs

<% Blue)

Project| Edit

Close

Save

Open Project...
Open Recent
Open Non Bluel...

Save As

Tools View Help

New Project...

Ctrl+0

v

Ctrl+W
Ctrl+S

Import...

Create Jar File...

((Java Programming
=2 SEC Notes

—_—

11

Marlene Galea

Using JCreator to create Java programs

Downloading JCreator

@.\ oy v B http:ffwww.jcreator .orgfdownload.htm

bod
| http://jcreator.org/download.htm

\/

2 Download the correct version of the]
1 software. EE—

Download
3. After the installation is complete, launch
JCreator from the icon on the desk top.

Go to:

[|

4. The first window to appear is File (oWnLo |
associations. Just click next.

5. The next window asks for JDK home DOWNLOAD
directory. Browse for the directory and
click next. S

6. The final window asks for JDK JavaDoc
directory. If you already downloaded the
JavaDoc file, browse for it and click finish.
Otherwise click finish to continue without
the documentation.

q

Create a folder on your desktop called ‘My Java Programs'’

:

File | Edit View Project Build Run Tools Configure

| New Y[3 Fie... Ctrl+h }\\
./ Open... Ctr+O | 3 Project... Ctrl+Shift+N Select File/New/File
Close .7 Blank Workspace...
Close all
=
Save As...
i

PEl File Type
ee] Specify the document template

lasses 1) Applet Class

Select Empty Java File e

H File Path 12 Other
and click Next ML T Exceplion Class
0 Java Class
U7 JavaEnum
I Java Interface
FY U7 Main Class
pal
File Wizard @ 3 L.
File Path Fe Empty Java File
Specify th d path % Creates a new empty Java file,
Specify the name and path
File Type ‘ [new] Cancel |[Help

© File Path Name : Keyboarding

Location: | ettings\Owner\My Documentsibackup\My Java Proglamm\

Specify the path to save in.
Give the file name
[Set as default page C“Ck Fl'nl'sh

o [_Finsh [cancel J[Hep |

s Java Programming 12 Marlene Galea
=2 SEC Notes

—_—

Running a Java Program

What happens when we run a Java program?

The computer does not understand Java, therefore all the programs we write need to be
translated into a form the computer can handle in order for the instructions we write to be
executed. Programs called ‘translators’ are used to do this. In Java translation is done in two

steps: using first a compiler than an interpreter.

What is Platform independence?

A platform is the hardware and system software on which application software can run.
Different platforms normally run different application software. ‘However, Java is platform
independent: it will run on different platforms. This is because the Java compiler does not
produce executable code but bytecode. Then the JVM on the machine that will run the

program changes the bytecode to executable code suitable for the platform it is on.

Two step translation
e The program is first compiled to produce bytecode
o At this stage the user cannot view the actual code but the program is still platform
independent. Therefore the bytecode is ideal for distribution.
e Then the JVM on the machine the program will run on uses an interpreter to translate the
program into executable code. The executable code is platform dependent because it will

be different for a Linux Machine and a Windows PC etc.

JVM Platform
Java Virtual Dependent
Machine
Platform B 4
Platform Independent Interoreted ol
Independent SURICES
Java Source
Code Compiled Bytecode Interpreted
Interpreted
Translation of a Java Program
((Java Programming 13 Marlene Galea

=2 SEC Notes

How do we run a Java program?
In order to run a program the system needs to first translate it and then execute (obey) the

translated instructions one by one.

This is how you can run a program using JCreator:
1. Write your program.
2. Click the ‘Run’ Menu.

3. Select '‘Run Project’. This will compile and then run your program.

to first compile your program...

OR use the 'Build file’ button ‘\

T—
Build | Run | Tools Configure Window Help \
||; Run Project FS | > L ~ | (3] [3]

)

+] RunFile og.java ¥
(#)Firstprog. java ...and then click the run

-/ Runtime Configuration...
T [* Firstprog application button to run it.

Running an application

.class and .java files Files

.class file: Our program

Java file
translated to bytecode

The program we write

= hello.java . hello.class
== | JAVAFile L | CLASSFile
= 1 KB L 1 KB

Jjava files are compiled to give .class files

e The programs we write form the source code file and have a .java extension (e.g. hello.java)

e When our source program (the java file) is compiled the equivalent .class file is created,

this is made up of bytecode.

e The JVM on which the program will run will then translates the bytecode (the .class file)

into something the platform it is on understands and then runs the program.

s Java Programming 14 Marlene Galea
=2 SEC Notes

—_—

What is a Java Applet?

)The Chaos Game%zs | Applets are used to provide interactive features to web

How to play the game

applications. A Java applet is delivered to the users in the
form of bytecode. Since Java's bytecode is platform
independent Java applets can be executed by browsers for

many platforms, including Microsoft Windows, UNIX and Mac

OS. Java applets can run in a web browser using a JVM.

Object Oriented Programming

Java is an object oriented Language. This means that data is treated as objects to which

methods are applied.

What is are classes and objects?

A class is the blueprint from which individual objects are created.
e The class specifies the properties (data or Object Variables) and methods (actions) that

objects can work with.
e The class ‘Dog’ shown here has properties (name, breed etc) and methods (actions)

(wagTail, getLeash etc)

An object is an instance of a class.

e If you have a pet dog called ‘Fido’, Fido is an object (an instance) of the class ‘Dog'.

Obijects like 'Fido’, Spot’ and 'Rocky’ are all instances of ‘Dog'.

Class: Dog
)\ Dog)
Properties:
e name name
e breed breed
e colour colour
Methods: . wagTail
* wagTail getleash
e getleash
The class ‘Dog’ has Object Variables (properties) and Methods.
Fido', ‘Rocky’ and 'Spot’ are instances of the class ‘Dog’ .
e Java Programming 15 Marlene Galea

=2 SEC Notes

=4

Three Principles of Object Oriented Programming

Object Oriented Programming is characterised by the following three principles:
Inheritance

Polymorphism

Encapsulation

Inheritance

e The items in black are classes. (Animal, fish etc)

e Classes have properties (name, breed etc) and methods (actions) (Feed, swim etc)

e Child objects inherit the properties and methods of their parents. (E.g. All dogs inherit the

feeding method from the parent class ‘Animal’ etc)

‘ Animal \
Speak
Feed

(buck) ((bog Y ([cat)

Swim SmellWell CleanSelf

(Guard Dog\ ﬁlunting Doa (Police Dog\

Inheritance: All dogs inherit the feeding
method from the parent class Animal.

e Java Programming 16 Marlene Galea
=2 SEC Notes

=4

Polymorphism

Polymorphism is the ability of an action or method to do different things depending on the
object that it is acting upon. For instance a parent class reference (e.g. ‘'speak’) can be used to

refer to a child class object: E.g. the method ‘speak’ in the animal class would do different

things when called from the child classes, Dog,
Cat etc. Overloading, overriding and dynamic
method binding are three types of

polymorphism.

For example the three subclasses Cat, Dog and
Duck are based on the Animal abstract class
and can each have their own speak() method.
Although each method reference is to an
Animal, the program will resolve the correct

method reference at runtime. This is an

example of Dynamic (or late) method binding. Polymorphism: the Animal Class could have a

method called ‘speak’. All animals would do
different things when this method is called.

Encapsulation

Encapsulation is the ability of an object to be a container (capsule) for related properties (i.e.

data variables) and methods.

Public A Class
Encapsulation allows data hiding so objects | nstance vasiables
(not recommended)
can shield variables from external access.
Variables which are marked as private canonly | ..
. X methods ‘_,,
be seen or modified through the use of public A A ¢ ¢
A Q¢
accessor and mutator methods. Methods can | ;... A A €€
methods

also be completely hidden from external use.

In Java methods that are visible externally can ey

instance vanables

only be called by using the object's front door

(i.e. there is no 'goto’ branching concept).

Encapsulation: Private properties and methods
can only be accessed through accessor or
mutator methods.

s Java Programming 17 Marlene Galea
=2 SEC Notes

—

Your very first Class

Let's say we're going to develop an application to handle a school system. The school system

will need to handle persons: including ancillary staff, teachers and students. Therefore we

should have a class to be a blueprint for these persons.

Object Properties (Object Variables)

We will therefore create a class called Person in order to later create instances of it to

represents the objects (people) in the school. These objects will all have a name, surname,

address and telephone numbers, therefore the class will have the following properties:

Property
(Variable name)

Description

Data type

NoOTE: in Java a variable of type
'String’ can hold words

and since no arithmetic will be carried out on
this number it can be treated as a non-number.

name This will hold the person’s first name and will be String
a word.
surname This will hold the person’s surname and will be String
a word.
address This will hold the person’s address and will be a String
few words long.
telNum This will hold the person’s telephone number String

The Class Person can be described thus:

Class Name T Person

String name

Instance Variables

_____— String surna

String telNu

String address

me

m

The Properties of the class called ‘Person’: 5 object variables of type String

In Java we implement the above using a class which we will call Person:

String name;

String surname;

class Person { ————1 | Aclassis declared with the ‘class’ keyword.
This class is called ‘Person’
The contents of a class are enclosed within { }

String address; [| Here our Object Variables are declared as
String telNum; Strings. o
(> The semi-colon () at the end of each line is
t_’_{) necessary
Java implementation of a simple class called ‘Person’
e Java Programming 18 Marlene Galea

=2 SEC Notes

—

Writing Methods: Object Actions

Our objects in the example above: Dog, Cat etc have methods like getLeash and wagTail.

Methods are actions for our object.

Let's give our Class Person a method that outputs the person’s details on the screen.

Class Name] Person
. String name
Properties ———— String surname
(Instance Variables) String address
String telNum
Methods]
(Object's Actions) | outputPerson()

The properties and methods of the class called ‘Person’

In Java we implement the above thus:

This is method outputPerson().

It is a ‘public’ method as it can be
accessed from outside this class.
It is ‘void' as it does not return a
value.

‘g ,| class Person {

String name;

String surname;

String address;

String telNum;

public void butputPerson(){ ————— | The contents of the method are
held between {}

System.out.println (this.name);
System.out.println (this.surname);
System.out.printin (this.address);

System.out.println (this.telNum);
This line instructs the computer

¥ to output the address of ‘this’
} object.

The Properties and methods of the Object called ‘Person’

Structure of a method
Method name - can be any Java

legal identifier

public void outputPerson(){\

// body df method — | Parameter list — a list of type and
Public/private 11 identifier pairs that receive values of
— a public arguments passed to method. This is
method is empty in methods with no parameters.
available to
other classes, a Return type — specifies the type of data returned by the
private method method. If the method does not return any data the return
isn't. type is 'void'".
e Java Programming 19 Marlene Galea

=2 SEC Notes

—

The Main Class and Main Method

In the class Person we have created the blueprint for all persons objects that might be needed

in our application.

A Java application normally consists of more than one class however. One of these classes
needs to be the main class: the main class always includes a method called ‘main” which is the
main method. The main class is important because this is the class the Java Virtual Machine
looks for to start executing the program. In an application you can have many methods in
different classes, you may also have many methods in the main class but you can only have

one main method because this is where the program starts running.

We will now create a main class and use instances of Person in its main method.

1. The class SchoolSystem will include

class SchoolSystem{ the main method of our application.

—_—

. B . . . 2. Main method declaration
public static void main (String args[]) {

statement/s;, —M . . .
/ 3. The instructions of the main method

> of this application will be put here.

y \ I

4. End of method ‘main’

5. End of class SchoolSystem

The Main Class and Main method

Main Method Declaration

Now let's take a closer look at the main method signature:

Public/private — a public method
is available to other classes, a
private method isn't. The main
method is public so the JVM can
begin execution of the program.

String args[] - This signifies that the
user may enter parameters to the java
program at command line. We can
use both String[] args or String args][].

Static — the main method is 'Static’
to be available for execution without
an object instance. (Otherwise you
need an object instance to call a
method.)

\

public static void main (String args[]) {

// body of method

}

l

Return type - specifies the type of data returned
by the method. The main method does not
return data, so the return type is 'void'. Once main
method execution is over, the program stops. So
data can't be returned by the Main method.

e Java Programming
=2 SEC Notes

—

20

Marlene Galea

Creating instances of a class
Our school system application will require us to create instances of Person: all these objects

will have the properties (variables) and methods of the class Person class.

The school system may also have a class called Teacher and another called Student that will
inherit all the properties and methods of Person and possibly extend them. There would then

be instances of Teacher and Student as shown below.

Class Name \F Person \
r

String name
| _String surname

Instance Variables | = | String address
String telNum Inheritance: classes
p Teacher and Student
Methods —/CUt erson()) inherit the variables
and methods of
person
Object cleanerA is an N\
instance of Person. We
could have many such
instances: cleanerB, (Teacher \ (Student \
messengerA etc to Extends Person Extends Person
represent the different
school personnel. .)))
String Subject String OptSubject1
Int noOfLessons String OptSubject2
[getFreelLessons()
cleanerA \) \)
Anna
Borg \ 4 \ 4
88,Main Street, B'Kara
21448234 4 teacherA D) 4 studentA)
. Maria John
\Can output details) CaIIej.a . Mallia
23, Vine Street, Birgu 14, Bishop Street, Lija
21654558 21442434
Geography Chemistry
A No. of lessons Biology
Objects teacherrA and Can output details .
studentA are instance of Can output no. of Can output details
Teacher and Student free lessons
respectively. \ j \ j

Creating objects: instances of a class

c Java Programming 21 Marlene Galea
=2 SEC Notes

=4

Now we will implement something similar in our code by creating and using objects of type

Person in our main method.

One of the ‘persons’ involved in the school is the cleaner ‘Anna Borg'. Therefore in our

application Anna Borg will be an instance of the class Person.

To create cleanerA, an object of type person, we write:

Person cleanerA;

To create the memory for the object we use the keyword ‘'new’ and then we call the default

constructor method for the class, here Person(). (re constructor methods, see below.)

cleanerA = new Person();

The above can also be implemented in one line as:

Person cleanerA= new Person();

Here's what our main method will look like:

1. /* */ enclose a comment — a note for
the programmer that will be ignored by
the Java compiler

class SchoolSystem{

/* This application uses the object Person to create [

the instance 'cleanerA'*/ / 2. The main method of this application.

public static void main (String ar%_ 3. Declaring cleanerA, an object of type
Person cleanerA= new Person(); Person.

cleanerA.name = "Anna"; — |
4. Putting the values in the object

cleanerA.surname = "Borg"; .
variables.

cleanerA.address = "88, Main Street, Brara— |

cleanerA.telNum =" = 5. End of method 'main’

’ |

¥ 6. End of class SchoolSystem

Creating an instance of the object Person.

Now we have created the object cleanerA representing Anna Borg but we have not seen
anything on the screen to show it.
We could do this by using the method outPerson() in the class Person. Therefore now we will

see how we can call and use methods in our applications.

e Java Programming 22 Marlene Galea
=2 SEC Notes

—

Calling a Method

Here's how we will call the method outputPerson() to output the details of cleanerA.

Object Name - can be

Method name — can be any
Java legal identifier.

any Java legal identifier

cIeanerA.outputPerson(<

Hence the code shown below will:

-

Arguments - arguments to
be passed to the method.

e Create an instance of class Person called ‘cleanerA’

e Place the shown data in the object variables of cleanerA

e Call the method outputPerson() for cleanerA

e Execute the method outputPerson() to give the output shown here.

class SchoolSystem{

/* This application uses the object Person to create the
instance 'cleanerA' and then calls the method
outputPerson() to output cleanerA's details.*/

public static void main (String args[]){

Person cleanerA= new Person();

cleanerA.name = "Anna";

cleanerA.surname = "Borg";
cleanerA.address = "88, Main Street, B'Kara";
cleanerA.telNum = "21448234";

_
cleanerA.outputPerson();

Output:

Anna

Borg

88, Main Street, B'Kara
21448234

Process completed.

Calling the method

} outputPerson(); for the object
cleanerA,
by
Calling the method ‘outputPerson()’
e Java Programming 23 Marlene Galea

=2 SEC Notes

—

The Constructor method

A constructor method creates an object of the class it is in: it initialises the instance variables
and creates a place in memory to hold the object. Java has a default constructor that is called

whenever we don't write a constructor ourselves. We can also write our own constructors.

Let's take an application that will be used to take window orders. One of { Window

the classes in this application will be Window and two of its instance length
breadth
variables would be ‘length’ and ‘breadth’. It can be time-consuming to
getArea
initialize all variables in a class every time an instance of it is created. getPerimeter

—

We may set default values for the variables length and breadth so when we initialize a Window
object it would have those default dimensions. A constructor method will let us do this. A

Constructor method for class Window is shown here:

class Window{

float length; | | Constructor Method has no return
float breadth; type because it never returns a value

Constructor AN public Window

Constructor Method name — same

Method
length = 1;

as class name

breadth = 2;

y Initialising object variables

class winApp{ i | Calling the Constructor

public static void main (String args[]){ Method.
If we hadn't written a

Window kitchenWin = new Windo#(); constructor, this would call

System.out.printin("Length: "+kitchenWin.length); the Java default constructor.
The default constructor also
takes no arguments and

¥ performs no special actions
} or initializations.

System.out.printin("Breadth: "+kitchenWin.breadth);

The Constructor Method we wrote initialises Length and Breadth to 1 'Length: 1.0

and 2 respectively. Breadth: 2.0
Therefore when the output statements in the main method are
executed, we obtain the output shown here. Process completed.

Writing a constructor method

Constructors may include parameters of various types. When the constructor is invoked using

the 'new’ operator, the types must match those specified in the constructor definition.

e Java Programming 24 Marlene Galea
=2 SEC Notes

—

General Structure of a class

Therefore we have now seen that a class is implemented by:

e A number of instance variables that describe its properties

e A number of methods that describe its actions

Class Name

Instance Variables

methods

- ClassName

type instance-variable
type instance-variable2

type instance-variableN

classname()
r type methodname()

type methodnameN()

Generalised Structure of a Class

This is the general form and syntax of a Java class:

Class Name

Instance Variables

Constructor method has
the same name as the
class and no return type
(not even void)

Methods

NoOTE:

e Java is case sensitive, so e.g. ‘class’
and ‘Class’ are not the same.

e All lines of instructions end in a
semicolon '}’

- class classname {

type instance-variablel;
type instance-variable2;

type instance-variableN;

__L/ classname (parameter list){

// body of method
¥

type methodnamel (parameter list){
// body of method

}

type methodnameN (parameter list){
// body of method

}

Generalised Syntax of a Class

e Java Programming
=2 SEC Notes

—

25 Marlene Galea

Screen output in Java

Let's take a closer look at the output instruction in our application

System is a built-in class
present in java.lang
package.

It contains pre-defined
methods and fields, which
provides facilities like
standard input, output, etc.

" on

e Messages are output in

¢ Data (e.g. this.name) should not have
e + is used to join different output items

What is to be output is placed in ().

"o

\
System.out.printin ("Name:” + this.name);

out is a static final field (ie,

the type PrintStream

variable)in System class which is of

I

println() is a method in PrintStream
class to print the data values.

print/printin

The syntax for printing the words 'l Love Java' on your screen is the following:

System.out.printin (*I Love Java!”);

e The println command causes the item in brackets to be displayed and then moves the

cursor to the next line

e The print command causes the item in brackets to be displayed, leaving the cursor after

the last letter displayed.

Printin()

moves the cursor to the next
line after writing 'l Love Java' so
the next output statement ‘Do
You?' is given on the next line.

System.out.println ("I Love Java");
System.out.println ("Do you?");

S,

—

General Output

I Love Java

——Configuration:

System.out.print ("I Love Java");
System.out.println ("Do you?");

General Output

Configuration

I Love JavaDo you?

is given on the same line

Do you?
jg) Print()
— does not move the cursor to the

next line after writing ‘'l Love Java’ so
the next output statement ‘Do You?’

" u

+

first and second
(Before ‘Do you?’)

Introduces a forced space. So
there is a space between the
output.

System.out.print ("I Love Java." + "
System.out.println ("Do you?");

")
S

—

General Qutput

I Love Java. Do you?

Configuration: FJ

Print() and PrintIn()

< Java Programming
=2 SEC Notes

=4

26 Marlene Galea

Printing Literals

A literal is a notation for representing a fixed value in Escape | Meaning
\n New line
source code. \t Tab
\b Backspace
There are few character literals which are not readily \r Carriage return
printable through a keyboard. The table below shows \f Formfeed
\\ Backslash
the codes that can represent these special characters. \' Single quotation mark
. " Double quotation mark
The letter d such as in the octal, hex etc. represents a \ 9
\d Octal
number. Escape characters \xd Hexadecimal
\ud Unicode character

Printf
Printf can be used instead of ‘print’ or ‘printIn’ to set the number of decimal places to print.
Therefore the following program using these escape characters will give the output shown

below.

class escchar {

public static void main (String[] args){
System.out.println (" Java \n is a great \n programming language.");
System.out.println (); //to skip a line
System.out.println ("Column \t column\t column");
System.out.println ("Java \t Java\t Java");
System.out.println ();
System.out.println ("Now I ask you, \'Don't you think Java is really fun?\");
System.out.printin ();
System.out.printf ("Look Java can even print this number to two decimal
places:%10.2f",3.1415);

) S,

} —

Output:

Java
1= a great
programming language.

Column column column
Java Java Java

Now I ask you, 'Don't you think Java is really fun?'

Look Java can even print this number to two decimal places: 3.14

Using the escape characters \n, \t,\' and printf

e Java Programming 27 Marlene Galea
=2 SEC Notes

=4

Changing the output in JCreator

To obtain the output in the same window

1 Go to Configure\Options
Tools | Configure | Window Help
% Options... L3
=
™
=] /*%* General JDK T
. (= Editor
S)
Bi#)Fir - Java Sel
* +-Jsp g
- - Xml]
[+ Ant
[+ Html
[+ Plain
Select JDK Tools 2 &- Default
L Directories
B JDK Profiles
[+ Workspace
Code Insertion -
General JDK Tools Tools
Editor o 5
T e - File Associations
@ Jsp Select Tool Type: ‘HunAppI[cal(on v
- Xml
@ A
2
From the Select Tool Type, pull
down Run Application and click peee
default and then ‘Edit’.
[T File Associalons
I 0K][Cancel][Apply][Help]
| * Firstproglb application
Click Edit and the Tool 4~ — -
Configuration: Run Application e
. & Jsy Select Tool Type: | Run Application N
dialog box appears. i B '
- Html
Dmi,este;:it Tool Configuration : Run Application @
JDK Profiles . ‘ ‘ Delete
. JDK Tools ame :
Click Capture output. 5 e
Code [Mvexign Command | Parameters
Tools
File Associationd d: ["$avaHome]\bintjava exe” 3]
. . [Save all documents [[] Suppress output until completed
Now your output will appear in the iz Caphrs it
) pn| - sole on ex [[] Show command line :] ——]
window below your program and you lBuid
will be able to scroll the output if Lo o IR oo]

necessary.

e Java Programming
= SEC Notes

28

Marlene Galea

To obtain the output in a new window

In the above dialog box, uncheck ‘Capture Output’ and click ‘OK’,.

Changing the output Window properties

If you would like your output in a new window, you can set its properties to your liking. For

instance to show as black text on a white background follow these steps:

cv C:\Program Files\Xinox Software\JCreatorV4LE\GE2001.exe

12
Press any key to continue...

Right click title bar and
select 'properties

[m]

X

Select colour tab. 2

Move
Size
Minimize
Maximize
Close

Edit »
Defaults

\Program Files\Xinox Software\JCreatorV4... @g

Options] Font I Layout] Colors]

Cur]
I {* Small
" Medium
" Large
Command History
Buffer Size: 50 E’:
Number of Buffers: 4 El:

|~ Discard Old Duplicates

Dptions] Font I Layout Colors

" Screen Text Selected Color Values
* Screen Background Red: 255 3:
" Popup Text Green:

255 Eﬁ

Select your colours
accordingly

Selected Screen Colors

5:al

L@l
@l

10-01-99

1A (109

GC:\WINDOUS> dir
STEM <DIR>

CTEM29 ZNDIDS

You can edit further aspects of
% the output using the rest of

¢\ “C:\Program Files\Xinox Software\JCreatorV4... E

Display Options

(¢ ‘Wwindow

" Full Screen

Edit Options

I™ QuickEdit Mode
V' Insert Mode

Sy the tabs : I
%l’.h““'c T™OT DCA%C 4 fA_fA4 a0 E:E!
0K | Cancel

(s Java Programming
=2 SEC Notes

=4

29

Marlene Galea

How to display line numbers in JCreator

As our programs grow larger, we may appreciate having JCreator supply us with the line

numbers for the lines of code on the side.

File Edit | View LProject Build Run Tool
BRI | 1-] File View Ctri+al+L

To display line numbers select ‘show line numbers’
Start Page | 4 ClassView Curl+Alt+C [

from the 'View' Menu as shown. O class {L@ PackageView CtrAl+p
S pul 7] Start Page Bt
lo
Else Toolbars b
} Other Windows 4
To always show line numbers follow the steps below: ’ o8] Show Whitespace

l Show Line Numbers |

I_Full Screen

-)
- from the Configure
| 0pt|0ns. . IL - Menu General General
Customize... +- Editor Os |
Directories haslly
JDK Profiles M aximi
JDK Tools o d
. . . v
Click on Editor (+) and double click Java 2 ¥ Workspace Matimi
Code Insertion [INo spl
Compatibility . -
[¥] Shaw line nurmtber 7T Backspace at start of ine 3 In Compat|b|l|ty PaHE, SeleCt 'ShOW
Shaw selection margin [Trim trailing spaces line numbers'.
[¥] Auto insert brackets Track changes Click 'AD[)lV' and ‘OK'.

Comments in Java Programs

Comments within programs allow us to describe the code so that later we (or anyone else) will

find the program easier to follow.

There are 3 types of commenting in Java:
o /] text : the compiler ignores everything from // to the end of the line
o [*text*/ :the compiler ignores everything from /* to

e /** documentation */ : can span over several lines as shown below:

[**This is a comment
* that spans more
* than one line

*/

s Java Programming 30 Marlene Galea
=2 SEC Notes

—

What are variables?

Variables

name.

Variables are areas of memory identified by a
Program instructions can read data from

variables or write data to them.

Therefore the contents of variables are changed
while a program is running. For instance a variable
can hold a null value (0) when a program starts
running but later in the program its value can

change to 5 or 7 etc.

AN\
Variables are <0}/merr\1Uat can
hold ram dat
@ Variable types - Primitive Types
Variables @ have different types, depending on the
data they can hold. A primitive type is
already defined by the language and therefore
‘ready to use’.
The names of these variable types (eg. Byte,
short, int The value in a variable can change while etc) are reserved keywords.
the program is running
Variable type Variable size Accepted Data Range
byte 8 bits -128 to 127
short 16 bits -32,768 to 32,767
int 32 bits -2,147,483,648 to -2,147,483,647
long 64 bits -9,223,372,036,854,755,808 to 2% - 1
float 32 bits 1.4e045 to 3.4e38
double 64 bits 4.9e324 to 1.8e308
char 16 bits O to 65,535
boolean 1 bit True or false
31 Marlene Galea

e Java Programming
=2 SEC Notes

—_—

Variable types - Strings

Java allows us to use character strings because it has the ‘java.lang.String’ class. The String

class is not really a primitive data type, but Java allows us to use it like a primitive type.

The String class

(String Class)

+length()

+equals()

I

+ toLowerCase()
+toUpperCase()
+charAt()

o

When we create a String we are creating an object of type String.

Enclosing strings within double quotes automatically creates a new String object; for example,

String s = "this is a string";

Variable names

Variable names must obey certain rules and conventions:

Variable names must not be a Java keyword or reserved word

Java reserved words

abstract
assert
boolean
break
byte
case
catch
char
class
const

continue for new switch
default goto package synchronized
do if private this

double implements protected throw

else import public throws

enum instanceof return transient
extends int short try

final interface static void

finally long strictfp volatile

float native super while

A list of Java Reserved Words and that therefore cannot be variable names

e Java Programming

=2 SEC Notes

—

32 Marlene Galea

e Variable names must not be Boolean literal (‘true’/'false’) or ‘'null’
e Variable names must be unique within their scope.
o E.g. you cannot have two variables of the same name declared at class level.
e Variable names must not contain blank spaces
o E.g. The variable name ‘client name’ is not acceptable but ‘client_name’ is.
e Variable names cannot start with a number. They must start with a letter, underscore
() or dollar sign ($).

o E.g.’2num’is not acceptable but 'num2’ is acceptable.

Declaring variables
Before a variable can be used, it needs to be declared. This means one needs to state its type

and name.

Declaring a single variable:

type variable_name; .

o Declares an integer
. 1 variable called ‘age’
int age;
type variable_name;

e Declares a string
string e 1 variable called 'name’

I

Syntax for declaring a single variable

The following gives the output shown here:

public class declarevarl {

public static void main(String[] args) {
String name;
name = "Flower Shop";

System.out.print("The shop name is" + " " + name) ;
} <,

+ =

The shop name i= Flower Shop

Declaring a single variable

e Java Programming 33 Marlene Galea
=2 SEC Notes

—

Declaring a list of variables:

variables

int age, max, min; |_— | declares 3 integer

The following gives the output shown here:

public class declarevarl {

public static void main(String[] args) {
String name, village;
name = "Flower Shop";
village = "Lija";

System.out.printin("The shop name is" + " " + name) ;
System.out.print("Village:" + " " + village) ;

<,

<
—

e

Village: Lija

The shop name is Flower Shop

Declaring a list of variable

Declaring a variable and simultaneously putting a value in it:

int age = 15; /_

15init

Declares an integer variable
called age and places the value

The following gives the output shown here:

public class declarevarl {

public static void main(String[] args) {
String name = "Flower Shop";

System.out.print("The shop name is" +
b
b

+ name) ;

<
-—

Process completed.

The shop name 1= Flower Shbp

Declaring a variable and putting a value in it simultaneously

< Java Programming 34
=2 SEC Notes

=4

Marlene Galea

Scope of variables
A scope is created within a block of statements enclosed in curly brackets. A variable declared
within curly brackets is only ‘visible’ within those curly brackets and cannot be used outside

them.

1. Variables declared at class level and those declared enclosed in curly brackets can both be

accessed within those curly brackets.

This program gives the output shown:

class scopeexample{ General Output
public void windkow{ | | ————————]
int age = 15; 15

¢ 160
int height = 160; |

‘age’ has a scope
within all this method
included within the
curlies below { }

}

'height’ has a scope
limited to these {}

Scope of a variable

2. Variables declared within curly brackets can not be accessed outside those curly brackets

This program gives the error message shown:

Build Report
class SCOPeexample{ Message Folder Location
public static void main (String[] args){ B Resource: scopeexample.java
) cannot find symbol variable height C:\Document... line 9
int age = 15;
{ /_ The program does not
int height = 160; compile because 'height’ is
} declared between these
twisted brackets and so its
System.out.printin(age); scope is limited to them. It
System.out.printin(height); cannot therefore be accessed
} (from outside those brackets
b g to be printed on the screen.
Trying to access a variable from outside its scope
s Java Programming 35 Marlene Galea

=2 SEC Notes

—

3. Variables declared enclosed in curly brackets can be accessed within those curly brackets

(variables declared at class level can be accessed from anywhere within that class).

This program gives the output shown: General Output

class scopeexample{

public static void main (String[] args){ 15
int age =15; 160

int height = 160; ‘age’ has a scope within all this

class so it can be printed from

) anywhere within it.
System.out.printin(age); x
} 'height’ has a scope limited to
y ((these { } and can be printed
=2 from within them

Scope of class level variables

Variable Initialisation

Normally all variables are initialised to zero or null but one can always initialise a variable.

The compiler never assigns a default value to an uninitialized local variable. So assign it a value

before using it. Accessing an uninitialized local variable gives a compile-time error.

To initialize a variable to a value we use the ‘=" sign. Both these examples declare the variable

‘area’ as an integer and initialize it to ‘10"

int area;
area = 10;
/ The '="sign is used to
int area 7 10 put a value into a
B variable

Dynamic initialisation
In Java variables can be initialised dynamically, this means that a variable can be initialised at

the time it is declared using a valid expression.

E.g. here area is being initialised dynamically as the product of ‘length” and ‘breadth’:

int area = length * breadth;

((Java Programming 36 Marlene Galea
=2 SEC Notes

—

Variable types and value ranges

The relationship between a variable and its value is the same as that between a container and

its contents. The variable and the value have to match in their size and type: you cannot put a

value that is too large into a variable too small to contain it and the value type has to be

acceptable for that variable type.

Imagine you are putting numbers
that are physically bigger than the
box into which we try to put them
(here our variable, called num1)

1,2,3,4,5, 6, 7, 8, 9,] O

10

contain it

You cannot put a value that is too
large into a variable too small to

You can put a value into any
variable that is large enough to
contain it

Scope of class level variables

Each primitive data type has a fixed number of bits in which to accommodate values, hence

each data type has its acceptable data range.

Variable type Variable size Accepted Data Range
byte 8 bits -128 to 127
short 16 bits -32,768 to 32,767
int 32 bits -2,147,483,648 to -2,147,483,647

long 64 bits -9,223,372,036,854,755,808 to 2% - 1
float 32 bits 1.4e045 to 3.4e308

double 64 bits 4.9e324 to 1.8e308
char 16 bits O to 65,535

boolean 1 bit True or false

So for example the number 50 can fit into a variable of type ‘byte’ but the number 128 cannot

¢ Java Programming

37

Marlene Galea

=2 SEC Notes

128 50
You cannot put 128 into a variable You can put 50 into a variable of
of type byte because it is too large type byte because it is between -
128 and 127

Automatic type conversion

Scope of class level variables

~

The triangle, the circle and the square are different
shapes.
However because one is smaller than the other, the
triangle can easily be placed within the circle, and the
square.
The circle can also easily be placed inside the square.
But there's no way anyone could put this square into the
triangle.

Automatic type conversion

Similarly it is possible to put the contents of smaller variables into larger variable types but not

vice versa.

\

v4
A

(byte)

height
(int)

A

height
(byte)

byte length = 5;
int height = length;

int length = 5;
byte height = length;

Putting a byte variable into a larger
int variable is allowed

Putting an int variable into a
smaller byte variable is not allowed

Automatic type conversion

(s Java Programming
=~ SEC Notes

=4

38 Marlene Galea

Variable Type Compatibility Chart

The following chart summarises variable compatibility, that is, what variable types can be

copied to which.

The inner box can fit into the outer box but not vice versa

boolean

float
32 bit

1 bit

double
64 bit

Variable types in the inner boxes can fit in the outer boxes but not vice versa

Type casting

Java can automatically cast (change) from one type to another as long as the type fits into the

above compatibility chart.

The syntax to typecast one variable into another is

double pi = 3.1415;1— Forcing the data item to fit
int x = (int) pi; into an integer variable.

Forcing the data item to fit
int pi = (int)3.1415; into an integer variable.

However the following does not fit in with the above compatibility chart and so is not correct

and will give an error:

ERROR!

boolean pass = true;

int a = int(pass);

s Java Programming 39 Marlene Galea
=2 SEC Notes

—_—

Final (Constant) Variables

Final Variables or Constants are variables whose value cannot be changed -

while the program is running.

Declaring a constant

. . . . Constant
In Java a constant is declared as a static and final variable
Constant names are generally
written in ALL CAPS
static final int AGE = 5;
Static so the variable to be ‘final’ shows the
available without loading an variable is a constant
The following gives the output shown here:
public class multiply { General Output
. e . Confi
static final int MULTIPLE = 5; g
public static void main (String args[]){ %g
System.out.println (1 * MULTIPLE); gg
System.out.printin (2 * MULTIPLE); 30
System.out.println (3 * MULTIPLE); ig
System.out.printin (4 * MULTIPLE); gg
System.out.printin (5 * MULTIPLE);
Process completed.
System.out.println (6 * MULTIPLE);
System.out.printin (7 * MULTIPLE);
System.out.printin (8 * MULTIPLE);
System.out.printin (9 * MULTIPLE);
System.out.printin (10 * MULTIPLE);
b
b g) Using a Constant
Had the program been written like this
prog class multiply {
it would have given the same output: public static void main (String args[]){
final int MULTIPLE = 5;
System.out.printin (1 * MULTIPLE);
) ‘g ,
c Java Programming 40 Marlene Galea

=2 SEC Notes

=4

Keyboard input

Sometimes we need our programs to accept input from the user. The Java JDK includes a class
called 'Scanner class’ which has some very useful methods for inputting data through the

keyboard.

1. Import Scanner Utility

In order to use this class we have to import it using the following line:

import java.util.Scanner; | Imports the Scanner class so

we can then use its methods.

2. Create a Scanner object

To use the Scanner utility, we need to create an object using the following syntax:

Type Variable name | = new type 0O;

Scanner | input = new Scanner | (System.in);

To get user input we need to use the
system input stream

3. Reading data from keyboard into variables

The table below explains how to read data into the different variable types using the scanner
class.

Reading an integer int a = (input.nextInt());
Reading a double variable double a = (input.nextDouble());
Reading a float variable float a = (input.nextFloat());
Reading a String variable String a = (input.nextLine ());
Reading a short variable short a = (input.nextShort());
Reading a byte variable byte a = (input.nextByte());
Reading a long variable long a = (input.nextLong());
Reading a Boolean variable boolean a = (input.nextBoolean());
Reading a char variable String a = (input.nextLine ());
Characters cannot be read char'b = a.charat(0)

directly so we read a string and

take the first letter only.

e Java Programming 41 Marlene Galea
=2 SEC Notes

—

Coding convention Rules
Naming classes, variables and constants

Programmers tend to stick to certain basic rules when naming their classes, variables and
constants as well as when structuring their programs. Following code conventions make
programs more understandable by making them easier to read. They can also give information
about the function of the identifier; for example, whether it is a constant or a class. This can be

helpful in understanding the code.

Identifier Type | Rules for Naming Examples
Classes Class names should be nouns in singular. | class Test;
If there's more than one word the first class MathsTest;
letter of each internal word is capitalized.
Keep class names simple and descriptive.
Methods Methods names should be verbs run();
If there's more than one word the first runFast();
letter is lowercase, with the first letter of)
. L selectFromMenu();
each internal word capitalized.
Variables Variable names should be short yet int num;
meaningful. char letter;
Thg choice o.f a varlaple name should float myWidth;
indicate the intent of its use.
One-character variable names should be
avoided.
Constants The names constants should be all final int MIN_WIDTH = 4;
uppercase WIt"h"WOI’dS separated by final int SPEED_LIMIT = 60;
underscores ("_").

Code blocks

Opening first curly bracket same line as construct and closing on a separate line.

class multiply {

final int MULTIPLE = 5;

public static void main (String args[]){

System.out.printin (1 * MULTIPLE);

S,
g_/,

(s Java Programming 42

=2 SEC Notes

—

Marlene Galea

Arithmetic Operators
Basic Arithmetic

To do basic arithmetic in Java we use the following syntax:

Adding a and b and storing answer in c. c=a+b;
Ch a\"' b; Subtracting b from a and storing answer in c. c=a-b;
\ Multiplying a and b and storing answer in c. c=a*b;
Work outa + b . -
and store the Dividing a by b and storing answer in c. c=a/b;
answer in ¢ Returns the remainder obtained after dividing a c=a%b;
by b. This is called modulus.

Basic Arithmetic in Java

Let's take another look at the class ‘'Window'

class Window{ ((Basic arithmetic in an application
]
float length; =
float breadth;
= Can also be written in two
public Window(){ lines:
length = 1; float area;
— * .
breadth = 2; area = length * breadth;
b

public float getArea(){

float area = length * breadth; -

length *breacth;

Returns the area to the

return area; method that calls ‘getArea()’

Here the backets () are
public float getPerimeter(){ needed so that (length +
breadth) is evaluated before

float perimeter = (length+breadth) * 2; the multiplication

return perimeter;

3 class winApp{ Calls the constructor in class

public static void main (String args[]){ Window

Window kitchenWin = new Window();

System.out.printIn("Length: "+kitchenWin.length);

System.out.printin("Breadth: "+kitchenWin.breadth);

Outputs the value \ﬂ
returned by getArea for | System.out.printin("Area: "+kitchenWin.getArea());

the object kitchenWin

System.out.printin("Perimeter: "+kitchenWin.getPerimeter());

} 4

E—
) =

e Java Programming 43 Marlene Galea
=2 SEC Notes

—

Unary Operators

The unary operators require only one operand; they perform various operations such as
incrementing/decrementing a value by one, negating an expression, or inverting the value of

a boolean.

The first two below are examples of unary operators:

Operator | This is... | ...equivalent to | Operation
++ n++ n=n+1 Add 1

-- n-- n=n-1 Subtract 1

+= n+=x n=n+Xx Addition

-= n-=x n=n-x Subtraction
= n=x n=n*x Multiplication
/= n/=x n=n/x Division

%= n%=x n=n%Xx Remainder

The Math Class

The Math is one of the libraries or classes found in the JDK. It has a number of methods and

the following are some of the more useful:

Method Description
abs(int x) Returns the absolute value of x
pow(inty, int x) Returns y to the power of x.
sqrt(double x) Returns the square root of x.
random() Returns a pseudo random number between 0 and 1.
round(float x) Returns x rounded up to the nearest integer.
ceil(double x) Returns the smallest whole number greater than or equal to x.
floor(double x) Returns the largest whole number less than or equal to x.
e Java Programming 44 Marlene Galea

=2 SEC Notes

—

Whenever we use any of these methods we have to first include the class name ‘Math’

because these are static methods.

What are static methods?

Static methods use no instance variables of any object of the class they are defined in. Static methods
typically take all the data from parameters and compute something from those parameters, with no
reference to variables. This is typical of methods which do some kind of generic calculation. A good
example of this are the many utility methods in the predefined Math class.

/_S_yst Calls method 'sqrt’ in class));

\ intx=29;

These both perform the same function and output '3.0".

Math and passes it the
value 9

System.out.printin (Math.sqrt(x));

class MathClass { — | The class name ‘Math’ has to
be included in every
instruction that makes use of
a method in it

public static void main (String args[])

intx=09;

System.out.printin(Math.sqrt(x));

S,

—_—

import static java.lang.Mathr"i;\

When we import all methods
in the class (using .*), we can
class MathClass { then use the methods in that
class without including the

f the class (Math
public static void main (String args[1){ - name of the class (Math)

every time.
intx=29; —
System.out.printin(sgrt(x)); General Output
; 3.0
} S,
= Process completed.

Importing a class with all its methods

e Java Programming 45 Marlene Galea
=2 SEC Notes

=4

Conditional transfer: If, if-else and switch

Sometimes we need our program to do a

Mark = 70

different thing, depending on a condition. For

instance in the example shown here we would

like our program to output ‘Pass’ if mark is
greater than 49 and otherwise output ‘Fail". Output ‘Pass

Therefore a programming language needs to

allow us to create branching instructions in .
Output ‘Fail’

order to implement decisions.

»
hl
4

Branching or decision instructions

The if statement

The if statement is used when we need to route program execution through one of two paths:

to take an action or to take no action.

Mark = 70

if | (condition) | Statement/s;

if | (mark>49) System.out.println (“Pass™);

if | (condition) | Statement/s;

if | (mark>49) {
System.out.printin (“Pass”);

System.out.println ("Well Done!”); Output ‘Pass’

b
v
Basic Structure of the if statement
int mark = 70; 3{)
if (mark>49)< =
] . . Pass
System.out.println ("Pass"); L | To execute 2 or more Well Done
System.out.printin ("Well Done"); lines IF the condition
is true we need to
¥ enclose these lines in If statement
{} example
e Java Programming 46 Marlene Galea

=2 SEC Notes

=4

The if-else statement

Very often we have a situation where if a condition
is true we want to execute one set of instructions
and if it is false we want to execute another set of
instructions. This is where the if-else statement is

used.

Here we have the flowchart and code for
representing the situation where if the mark is
greater than 49 we output ‘Pass’ and if it's not we

output ‘Fail’

The table below shows that in order to execute 2 or

Mark = 70

Output ‘Fail’

Output ‘Pass’

&
)l
4

Flowchart for if-then else branching

more lines in a branching instruction, we need to enclose these lines in { }

if | (condition) | Statement/s;

else | Statement/s;

if (mark>49) System.out.printin (“Pass”);

else | System.out.println ("Fail”);

if | (condition) | Statement/s;

else | Statement/s;

if (mark>49) {

System.out.println (“Pass”);

System.out.printin (*Well
Done!”);

else | {
System.out.printin (“Fail”);
System.out.printin (“Poor!”);

Basic Structure of the if-else statement

Therefore the generic structure for an if-else statement is as If (condition) {

shown here:

statement/s

}
else {
statement/s

}

((Java Programming 47
=2 SEC Notes

—

Marlene Galea

Logical operators

Conditional statements, like the if statement jump to a section of code depending on the

result of a condition. So far we have seen simple conditions (e.g. mark > 49). The following

is a list of simple and compound logical expressions:

Operator | Meaning Use Explanation

! unary not if (mark !=100) Outputs ‘Aim Higher' if the
System.out.printin(”“Aim Higher”); mark is not 100.

&8& and if (mark>49) && (mark<60) Outputs Grade C if the
System.out.printin (“Grade C”); nark is Beliieen SQang) 59.

[or if (name = “lan”) || (name = “ian” Outputs 'lan found' if the
System.out.printin (“lan found”); LERQe NG or lan’.

== equal to if (mark == 100) Outputs ‘Well Done' if the
System.out.printin ("Well markiis 100

Done");

I= not equal to if (mark != 0) Outputs ‘Not zero' if the
System.out.printin ("Not zero"); mark is not 0.

> greater than if (mark>49) Outputs 'Pass’ if mark is 50
System.out.printin(“Pass”); or greater.

>= greater or if (mark>=49) Outputs 'Pass’ if mark is 50

equal System.out.println (“Pass”); or greater.
< smaller than If (mark<50) Outputs ‘Fail” if marks is
System.out.printin (“Fail”); less than 50 {49 or less).
<= smaller or If (mark <=49) Outputs ‘Fail" if mark is less
& System.out.printin (“Fail”); than 50 (49 or less).
Example

Let's say we have a program that randomly generates two integers a and b and outputs

whether the first integer is a factor of the second.

Note: if it is a factor there will be no remainder when we divide b by a. So we will use modulus

(c = b %a) here.

e Java Programming
=2 SEC Notes

—

48

Marlene Galea

We import all methods
in the Math class (using
.*) so we can use its

class Factors{ methods without
including the name of
the class (Math) every

import static java.lang.Math.*;

public static void main (String args[]){

intc; time. Here we will use
the ‘random’ method.

int a = (int)(100.0 * random()) + 1;\

int b = (int)(10.0 * random()) + 1; This line generates a
random number from 1

c=a%b; to 100, converts it to

integer and stores it in

if (c==0){ integer variable a.

System.out.printin(b + "is a fa

Divides a by b and
stores the remainder in

else { C

|| Outputs b is a factor of
¥ a if the remainder is 0

) ——_ | | Outputs b is a factor of
a if the remainder is
not 0

Finding if one randomly generated number is a factor of a second randomly generated number,

Nested-if

A nested if statement is and if construct present inside the body of another if construct.

‘General Output

class NestedIf { Configu
public static void main (String args[]){ Pass. Mark above average
int mark = 70;
float average = 65; Process completed.
if (mark>50){
if (average > mark){
System.out.println ("Pass but below average");
b
else{
System.out.println ("Pass. Mark above average");
b
b
else{
System.out.println ("Fail!");
b
} ; ‘S_—g > Nested-if
((Java Programming 49 Marlene Galea

=2 SEC Notes

=4

The Switch Statement

Sometimes our choice is not between two things as with ‘Pass’ and ‘Fail’. Let's say we have a
program menu that will take execution to a different part of a program depending on the
user's menu choice. In this case it would be too cumbersome to implement the selection using

ladders of if statements.

For such multi-way branching, the switch statement is better suited.

switch (expression){ e

The switch compares the value
case 1: {

of the expression with each of
statement/s; the values in the case

break; statements
b |

Statements to be executed if

case 2: { ‘expression’ is 1’
statement/s;
break; — The default statement if
} optional and is executed only
default: if none of the case con.stants
matches the expression.
statement/s;(If no statement matches and
) E{) there is no default expression,
} \ a nothing happens.

Structure of the switch statement

Using method parameters

The declaration for a method or a constructor declares the number and the type of the
arguments for that method or constructor. The method getDay has one parameter dayNo
which is an integer number. The parameters are used in the method body and at runtime will

take on the values of the arguments that are passed to it by the method that calls the method

getDay.
The method getDay has the parameter
dayNo which is an integer number. At
String getDay(int dayNo){ runtime the values that are passed by the
} method calling the method getDay will e
passed to the parameter dayNo.
e Java Programming 50 Marlene Galea

=2 SEC Notes

=4

Parameters refers to the list of variables in a method declaration.

Arguments are the actual values that are passed in when the method is invoked. When you

invoke a method, the arguments used must match the declaration's parameters in type and

order.

Let's say we are dealing with a calendar application that has a method to convert the numbers

1 to 7 into the equivalent day of the week. This could be successfully implemented using a

switch statement.

A switch statement being used to convert the
numbers 1 to 7 into the equivalent dy of the
week.

The method getDay receives a value for dayNo
from the method that calls it.

General Output

Today 1t 1= Friday

Process completed.

public class DayOfWeek{

int hours;
String day;

String getDay(int dayNo){
switch (dayNo){

class Calendar{
public static void main (String args[]){

E—

(

—_—

DayOfWeek today = new DayOfWeek();
int dayNo = 5;

today.getDay(dayNo);
System.out.println ("Today itis " + today.day);
b
b

case 1: {
day = "Monday";
break;

b

case 2: {
day = "Tuesday";
break;

b

case 3: {
day = "Wednesday";
break;

b

case 4: {
day = "Thursday";
break;

b

case 5: {
day = "Friday";
break;

b

case 6: {
day = "Saturday";
break;

b

case 7: {
day = "Sunday";
break;

b

default: { day = "Invalid day";}
b

return day;

e Java Programming 51
=2 SEC Notes

=4

Marlene Galea

Loops

Sometimes we have one or more instructions that we would like the system to execute a

number of times, usually until a condition is met or until they have been executed a given

number of times. This is implemented using a loop.

Java offers us the following three looping constructs: for, while, do-while

The for loop

The for loop is used when, before we start executing the loop, we know how many times we

want to repeat the loop.

Initialises the start of the
loop. Eg.i=0

The iteration part that
increments (i++) or
decrements (i--) the variable
each time the program loops

/

statement/s;

For (initialization; condition; iteration){

}
/

The statement/s to be
looped.

The condition to be tested.
Eg.i <10

for | (| initialization | ; | condition | ;

iteration |)

for | (i=0 ; i<10 |; i++)
class ForTest{
public static void main (String args[]1){ =1
_ x=2
int x; w=3
==4
for (x=1; x<=10; x++) ==5
System.out.printin("x=" +x); ==6
({ ®=7
}\ :E_;/j =8
==9
} When only 1 statement is ==10
being looped, { } are not
needed. Process completed.

Using a for loop to output x = 1.x =10

(s Java Programming 52
=2 SEC Notes

—

Marlene Galea

While and do..while

The while and do-while loops are both conditional loops: this means they loop until a particular

condition is met. When a program is being created it is not always clear how many times the

loop will need to be executed. Think for instance of a ‘guessing game’: the user may guess

immediately, but he may guess after two tries or after a 100 tries...so the looping statement in

such a game needs to be implemented using an indeterminate loop.

The While Loop.

A

Statement/s

f

Is condition
true?

The Do..While Loop.

O

Statement/s

Is condition
true?

- The While Loop, checks the condition before
executing looping statement/s.

- If the condition is immediately satisfied the
looping instructions won't be executed at all.

- The while loop is executed 0 or more times.

- The do..while Loop, checks the condition after
executing the looping statement/s.

- If the condition is immediately satisfied the
looping instructions still execute at least once.

- The do..while loop is executed 1 or more times.

import java.util.Scanner;
class WhileExample{

public static void main (String args[]){
Scanner input = new Scanner (System.in);
int num = 7;

System.out.print ("Enter your guess: ");
int guess = (input.nextInt());

while (guess '= num){
System.out.printin();
System.out.println ("Wrong guess. Retry");
System.out.print ("Re-enter guess: ");
guess = (input.nextInt());

}

System.out.printin ("Correct guess™);

&
—

import java.util.Scanner;
class Menu{

public static void main (String args[]){
Scanner input = new Scanner (System.in);
int choice;

do {

System.out.printin ("MENU");

System.out.println ("1. Enter Students
Details");

System.out.println ("2. View Student
Details”);

System.out.println ("3. Exit");

System.out.print ("Enter choice:");

choice = (input.nextInt());
} while (choice!=6);

} «

} —_—

e Java Programming
=2 SEC Notes

—

53

Marlene Galea

Take a closer look at the syntax of these two loops:

while (guess != num){ —_—
System.out.printin(); — | If the guess entered is not

System.out.println ("Wrong guess. Retry"); equal to the value of num
System.out.print ("Re-enter guess: ");

guess = (input.nextint()); the loop will be executed

} again.
. System.out.printin ("MENU");
These lines are executed System.out.printin ("1. Enter Students
.BE!:ORF tf?e c?)ncllltli)ln Details");
] System.out.println ("2. View Student
[Details”);

System.out.printin ("3. Exit");
System.out.print ("Enter choice:");

choice = (input.nextInt());
} while (choice!=6);

Nested Loops

A nested loop is a loop within another loop.

The following example shows the use of a nested for loop to create the output patterns shown

here.

class NestedLoop{ General Output

. . ; . ; Cor
public static void main (String args[]){

*
int i; %%

33
int x; 23633

3636 36 I
for(i=1;i<6;i++)X Process completed.

for (x =1; x <=1i; x++)X

System.out.print ("*");

¥
System.out.printin ();
¥
,) 4,
A nested loop: a for loop inside another
c Java Programming 54 Marlene Galea

=2 SEC Notes

=4

Arrays

An array is a group of related data items (variables) of the same type that are referred to with

a common name.

Let's say the following is an array of 5 marks: 70, 85, 65, 80 and 75

Index 0 1 2 3 4
. (door number)
MarkList Element 70 | 85 | 65 | 80 | 75
(item in the house)

To refer to a particular element in the array we need to use the array’s name and that element’s

index: Marks[4] contains the number 75.

Using arrays

Declaring an array

The syntax for declaring an array in Java is the following:

int[] markList;

Creates an

array variable called
marksList that will hold integers only.

Assigning an array

markList = new int [5]; |

Creates an array and assigns it to array

variable
Declaring and assigning an array in one line:
array-variable = new type [size];
int[] markList | = hew int [51;

Using array variables

Outputting a single item in an array:

Given the array shown above, the following line outputs ‘80"

System.out.printin (markList[3]);

Inputting a single item into an array

Using an array in a for

markList[3] = (input.nextInt());

loop

e Java Programming
=2 SEC Notes

—

55

Marlene Galea

For loops are ideal for manipulating arrays as shown in the example below:

The Main program will call
class RunMarks{ the method enterMarks and
public static void main (String args [] X then getAverage so the array

TestMarks MathsTest = new TestMarks(); will first be filled with values

MathsTest. enterMarks(): in enterMarks and then their
athsTest.enterMarks(); average is calculated and

MathsTest.getAverage(); output in getAverage.

) &

import java.util.Scanner;

public class TestMarks{

Scanner input = new Scanner (System.in);

int[] mark = new int[5];

inti;

public void enterMarks(){
for (i=0;i<5;i++){
System.out.print ("Enter mark: ");
this.mark[i] = (input.nextInt());

public void getAverage(){
intt=0;
double average;

for (i=0;i<5;i++)

t= t+ mark(i};
—
¥ Enter mark: 75
— t/ir Enter mark: 70
average = t/i Enter mark: 80
System.out.printin ("The average is: " + average); Enter mark: 85
Enter mark: 70
} ((The average is: 76.0
} = Process completed.
c Java Programming 56 Marlene Galea

=2 SEC Notes

=4

Using a Third Party Class: The Keyboard Class

The Keyboard is a third party class used for data input. This is the listing of the Keyboard class:

import java.io.*;
public class Keyboard{

public static String readString(){
BufferedReader br;
try{
br = new BufferedReader(new InputStreamReader(System.in));
return br.readLine();
}catch (Exception e){

}

return null;

}

public static int readInt(){
return Integer.parselnt(readString());
b

public static byte readByte(){
return Byte.parseByte(readString());
b

public static short readShort(){
return Short.parseShort(readString());
b

public static long readLong(){
return Long.parseLong(readString());
b

public static float readFloat(){
return Float.parseFloat(readString());
b

public static double readDouble(){
return Double.parseDouble(readString());
b

public static char readChar(){
return readString().charAt(0);
b

public static boolean readBoolean(){
return Boolean.parseBoolean(readString());
b

e Java Programming 57 Marlene Galea
=2 SEC Notes

—

However, as we've already seen, the great thing about Java is that we do not need to know
exactly how a class works as long as we know how to use it. In order to input data using the

keyboard class we use the following syntax:

Using the keyboard class

Syntax Use

String name = Keyboard.readString(); Reads a string from the keyboard and

stores it in variable name

int num1 = Keyboard.readInt(); Reads an integer from the keyboard and

stores it in variable num.

byte num2 = Keyboard.readByte(); Reads a byte variable and stores it in

variably numa2.

short num3 = Keyboard.readShort(); Reads a short value from the keyboard and

stores it in variable num3.

long num4 = Keyboard.readLong(); Reads a long value from the keyboard and

stores it in variably num4.

float num5 = Keyboard.readFloat(); Reads a float from the keyboard and stores

it in variable numb5.

double num6 = Keyboard.readDouble(); Reads a double from the keyboard and

stores it in variable numé.

char ch = Keyboard.readChar(); Reads a character from the keyboard and

stores it in variable ch.

boolean tf = Keyboard.readBoolean(); Reads a Boolean value from the keyboard

and stores it in variable tf.

This table explains the use of the Keyboard Class to input primitive variable
types and strings. Therefore the keyboard class can be used instead of the
Scanner class in some of our programs.

e Java Programming 58 Marlene Galea
=2 SEC Notes

—

Appendix 1: Using third party classes in LeJOS

LeJOS is a firmware replacement for Lego Mindstorms programmable bricks. It includes a Java

virtual machine, which allows Lego Mindstorms robots to be programmed in the Java

programming language.

Simple LeJOS features

Feature

Example

Function

Import lejos.nxt.*

import lejos.nxt.*;

Will allow us to use the

LeJOS features

Using Sensors

UltrasonicSensor(SensorPort port)

assigning a new ultrasonic object

UltrasonicSensor us = new
UltrasonicSensor

(SensorPort.S1)

Creates ‘us’ a new instance

of Ultrasonic

getDistance()

us.getDistance()

Returns the distance to the

nearest object

LCD.drawString("Moving", 0, 0);

LCD.drawsString("Moving", 0, 0);

Display on screen

Timer class

Timer.sleep (250);

Timer.sleep (250);

Using the sleep method in
the timer class to create a
delay. (passing 250 as a
parameter, hence delaying
by 250 milliseconds).

Motor class

regulateSpeed(boolean yes)

Motor.B.regulateSpeed(true);

Regulates motor speed (1-

900)

setSpeed(int speed), Motor.B.setSpeed(500); Sets the motor speed
forward() Motor.B.forward(); Rotates the motor forward
backward() Motor.B.backward(); Rotates the motor backward
stop(), Motor.B.stop(); Stops the motor

e Java Programming
=2 SEC Notes

—

59

Marlene Galea

Yy

O

2
)
S

({ Java Programming 60 Marlene Galea
=~ SEC Notes

Here is an example LeJOS programme:

import lejos.nxt.*;

public class MyProg {

int distanceToNearestObject = 500;

LCD.drawString("Moving", 0, 0);
Timer.sleep (250);

Motor.B.regulateSpeed(true);
Motor.C.regulateSpeed(true);
Motor.B.setSpeed(500);
Motor.C.setSpeed(500);

Motor.B.forward();
Motor.C.forward();

Motor.B.stop();

Motor.C.stop();
by
Motor.B.backward();
Motor.C.backward();
Timer.sleep (50);

public static void main (String args []) throws Exception{

UltrasonicSensor us = new UltrasonicSensor (SensorPort.S1);

while ((distanceToNearestObject = us.getDistance()) >= 20){

A simple LeJOS program

This program causes the NXT to:

First output ‘Moving’ on its LCD;

Then move forward with a speed of 500 until the ultrasonic sensor detects an object less

than 20 cm away;

At this point it stops and then moves back for a short while.

< Java Programming 61
=2 SEC Notes

=4

Marlene Galea

Appendix 2 - The String class

Useful methods in java.lang.String

Method Explanation

String.length(); returns the number of characters in this string

Returns an integer

String.toLowerCase() returns a new string with all characters
Returns a String converted to lowercase

String.toUpperCase() returns a new string with all ' characters
Returns a String converted to uppercase
String.equals(String); Returns true if string is equal to another string

Returns boolean

String.charAt(index:int); returns the character at the specified index
Returns a String from this string
String substring(int beginIndex int endIndex)

To concat 2 strings

Password guessed? true
Password length i= §
The FOURTH letter in the password is o

: - This is the password in capital letters HELLO
class String_Functions{ This is the password in small letters hello

public static void main (String args [I
String password = ("Hello");
String pword = ("Hello");
boolean guessed;
guessed = password.equals(pword);
System.out.println ("Password guessed? " + guessed);
int letters = password.length();
System.out.printin ("Password length is " + letters);
char character = password.charAt(4);
System.out.println ("The FOURTH letter in the password is " + character);
String capitals = password.toUpperCase();
System.out.println ("This is the password in capital letters " + capitals);
String smalls = password.toLowerCase();
System.out.println ("This is the password in small letters " + smalls);

S,
T

e Java Programming 62 Using String class methods

=2 SEC Notes

—

import java.util.Scanner;

public class Account{

Using String class methods in an
application tackling password protected
user accounts

//Properties

String name;
String surname;
String password;
String username;
boolean guessed;

//Methods
Scanner Input = new Scanner (System.in);

public Account(){
this.guessed = false;
b

public void changePassword(){
System.out.print ("Enter New Password:");
this.password = Input.next();
System.out.print ("ConfirmPassword:");
String pword = Input.next();
if (this.password.equals(pword)){

System.out.println ("Password Changed");

b

else{

}

System.out.println ("Password does not match™);

}

public void guessPassword(){
System.out.print ("Enter Password:");
String userPword = Input.next();
if (this.password.equals(userPword)){
System.out.println ("Password Correct");
this.guessed = true;

}

else{

}

System.out.println ("Password Incorrect");

}

public void newAccount(){
System.out.print ("Enter name:");
this.name = Input.next();
System.out.print ("Enter surname:");
this.name = Input.next();

//generating username

String subname = this.name.substring(1, 3);
String subsurname = this.surname.substring(1,3);
this.username = subname + subsurname;

System.out.println ("Your new Username is" + this.username);

System.out.printin ("Your new Password is \'1234\");

e Java Programming 63
=2 SEC Notes

—

Marlene Galea

Appendix 3 - Simple GUI programs

Java supports graphics to enhance the looks of our applications. Here we will look at two

very simple ways you can include graphics in your application.

To do this we have to import the class JOptionPane using the line below:

import javax.swing.JOptionPane;

Displaying text in a Dialog Box

The syntax to display ‘Game Over’ in a Dialog Box is:

JOptionPane.showMessageDialog(null, "Game Over”);

)
(1) Game Over!

The code below displays the following dialog box:

import javax.swing.JOptionPane;

class Graphics{

public static void main (String args[]){

JOptionPane.showMessageDialog(null,

"Game Over!'\n" +
"Press 'Enter' to'play again");

S,
s

('i'\, Game Over!
= Press 'Enter" to play again

Escape character \n used to display
text on multiple lines

Displaying multiple lines in a Dialog Bix

< Java Programming
=2 SEC Notes

=4

64

Marlene Galea

Entering text in a Dialog Box

The syntax to display ‘Enter your name’ in a dialog box and then read the name into a string

variable is:

String name = JOptionPane.showlInputDialog("Enter your name”);

The variable in which the entered name
will be placed.

Enter name

2]

[Jane|

Cancel

The code below displays the following dialog box:

public void mainMenu () throws Exception{
String choices;

"MAIN MENU\n"+

"1. Create New Test\n"+

"2. Try Test\n"+

"3. Get Grade and Rank\n"+
"4. View Answers\n" +
"5. Read Notes\n" +
"6. Quit\n"+

"Enter.choice: \n");

int choice = Integer.parselnt(choices);

switch (choice) {

case 1: enterQuestions();
saveTest();
break;

case 2: tryTest();
break;

case 3: processMark();
break;

case 4: viewAnswers();
break;

case 5: readNotes();
break;

choices = JOptionPane.showInputDialog(
/

s

Escape character \n used to
display text on multiple lines

Integer.parselnt() is a method
that converts Strings (here the
variable choices) to integer

— | Note the wuse of a switch
statement to deal with a menu
choice

@ MAIN MENU
1. Create New Test
2. Try Test
3. Get Grade and Rank
4.View Answers
5. Read Notes

6. Quit
Enter choice:

I
‘ Cancel

A GUI Main Menu

e Java Programming 65
=2 SEC Notes

—

Marlene Galea

Appendix 4: Array of Objects

Java allows us to use an array to store objects.

Declaring an array of objects

Creates th d
Type (Name of the Class _\ asrseia r?ss ite igaya?rr;
the objects will be : ,gble y
. vari
instances of) Person [] CleanerList = new Person[5];
Array Name

Using an array of objects
import java.util.Scanner; ((

We will now use an array of Person objects.
class Person {

String name;

This is the Class Person that we used earlier String surname;

on. It now includes two methods: String address;

)) String telNum;
- inPerson() — reads data into the

object variables of the object public void inPerson(}{

dto Scanner input = new Scanner (System.in);
passed to it
System.out.print ("Name: ");

- outputPerson() — outputs the data in this.name = input.nextLine();

the object variables of the object System.out.print ("Surname: ")
passed to it. this.surname = input.nextLine();
System.out.print ("Address: ");

We will therefore make an array of instances this.address = input.nextLine();

of this class and have our array of objects System.out.print ("Tel. No.: ");
use these methods. his.telNum = input.nextLine();
by
public void outputPerson(){

/ System.out.printin (this.name);

Note the use of the "this’ keyword]
System.out.printin (this.surname);

System.out.printin (this.address);
System.out.printin (this.telNum);

¥ The Person Class

e Java Programming 66 Marlene Galea
=2 SEC Notes

—

Now let’s take a look at the main method below which produces the output shown:

import java.util.Scanner;

public class School_System{

public static void main (String args[]){

Scanner input = new Scanner (System.in);

System.out.print ("Enter number of new Cleaners: ");

int y = input.nextInt();

Person [] CleanerList = new Person[y];

for (inti = 0; i<y; i++){ /_

CleanerList[i] = new Person ();
System.out.printin();

CleanerList[i].inPerson();
} _

System.out.printin();
System.out.printin();

for (inti = 0; i<y; i++){

System.out.println ("List of CIean(y B

CleanerList[i].outputPerson();
System.out.printin();

S,
e

The number of elements in the array
is being determined by the user.

The for loop that will help us go
through the array. Remember that
the first array element is number 0.

Creating the object CleanerList][i]

Calling the method inPerson() for
the object CleanerList[i]

Using a for loop to go through the
array, this time calling the method
outputPerson() for each element in
the array.

Maria
Borg
25,

Jane
Abela
87,

Main Street,
21 443 554

Well Street,
21 553 576

Enter number of new Cleaners: 2

Name: Maria

Surname: Borg

Address: 25, Main Street, B'Kara
Tel. Ho.: 21 443 554

Name: Jane

Surname: Abela

Address: 87, Well Street, Zejtun
Tel. Ho.: 21 553 576

List of Cleaners

B'Kara

Zejtun

Using an array of objects

< Java Programming
=2 SEC Notes

=4

67

Marlene Galea

Appendix 5: Text Files

Java can read lines of text from a file and write lines of text to a text file.

Creating a text file

To import the necessary reading and writing classes we use:

import java.io.*;

Next we create a file object: and associate it with a file name:

The name of the text file

File}st = new File("test.txt");

Our file object is called
"test’.

Saving to a text file
When we save to a text file we use the keyword ‘write'.

Initialising an object (writer) to write lines to a text file:

BufferedWriter writer = new BufferedWriter(new FileWriter(test, true));

Writing a line of text to a text file:

writer.write(Test[i].question);

writer.newlLine();

Getting data from a text file
When we get data from a text file we use the keyword ‘read'.

Initialising an object (reader) to read lines from a text file:

BufferedReader reader = new BufferedReader(new FileReader(test));

Reading a line of text from a text file:

Test[i].question=(reader.readLine());

e Java Programming 68 Marlene Galea
=2 SEC Notes

—

Exception handling

When using text files, it is possible that the file we are trying to read from or write to is not
found (e.g. if it is saved on a Pen Drive which is not available right then). This would cause our
program to throw an input/output exception. Therefore we include ‘throws |IOException’ in
the signature of the method that will call methods in the io class. The compiler will complain

if we don't do this.

public static void main (String args[])throws IOException {

CAL Quiz Example

We will now look at a cimple Quiz application that makes use of the class Question shown

here.

import java.util.Scanner; ((

public class Question{
String question;
String answer;

Scanner input = new Scanner(System.in);

public void enterQuestion(){

Method enterQuestion() is used to K System.out.print ("Enter question:");
enter a question and correct
answer for each Question object \

this.question = input.nextLine();

System.out.print ("Enter answer:");

this.answer = input.nextLine();

b
public boolean askQuestion(){
Object,askQuestion() returns ‘true’ . . .
if \the user's lanswer'is correct AN System.out.println (this.question);
otherwise it returns ‘false’ \ System.out.print ("Answer: ");
String userAnswer = input.nextLine();
if (userAnswer.equals(this.answer)){
return true;
by
else{
The class Question will be used to create return false;
instances of questions. Each of these objects y
will have a question and an answer and will }
have two methods ‘enterQuestion() and
askQuestion() by
e Java Programming 69 Marlene Galea

=2 SEC Notes

—

import java.io.*;

(PN

import java.util.Scanner; =

class TextFiles{

public static void main (String args[])throws IOException {
Scanner input = new Scanner(System.in);
Question[] Test = new Question[5];
File test = new File("test.txt");
int choice = 0;

do{
System.out.printin ("MAIN MENU");
System.out.println ("1. Enter Test Questions");
System.out.println ("2. Try Test");
System.out.println ("3. Exit");
System.out.print ("Enter choice:");
choice = input.nextInt();

switch (choice){
case 1:{
for (int i=0;i<5;i++){
System.out.printin();

Test[i] = new Question (); Calling the method enterQuestion
for Test[i]

Test[i].enterQuestion();

System.out.printin();
by

BufferedWriter writer = new BufferedWriter(new FileWriter(test, true));

for (inti = 0; i<5; i++){

Writes the contents of the array into
wrlter.wrlte(Test[l].questlon);/_ the text filel, 1 element at a time.

writer.newLine();
writer.write(Test[i].answer);
writer.newLine();
b
writer.close(); It is important to close the file
break;
b
[This method is continued overleaf...]
e Java Programming 70 Marlene Galea

=2 SEC Notes

—

case 2:{

int mark = 0;

BufferedReader reader = new BufferedReader(new FileReader(test));

for (inti = 0; i<5; i++){ Reads the questions and answers
Test[i] = new Question (); from the text file mto the array Test,
one element at a time

Test[i].question=(reader.readLine());

Test[i].answer=(reader.readLine());

System.out.printin();
if (Test[i].askQuestion()){
mark = mark + 1;

by /— It is important to close the file

reader.close();

System.out.println ("Your mark is:" + mark + "/5");
System.out.printin();
break;

}

case 3:{
System.out.printin();
System.out.println ("Exiting");

break;
b Repeatedly displays the Main Menu
b / for the user to choose what to do
} while (choice != 3); next, until the choice is 3 (Exit)
¥
¥
«

—_—

A CAL Quiz Application using text files

When the user runs the above application:

e The Main Menu is displayed allowing the user to enter test questions, try the test or exit
the application.

e When the user enters test questions these are entered into the array and then saved onto

the text file

e Java Programming 71 Marlene Galea
=2 SEC Notes

—

e When the user tries the test, the questions and answers are copied from the text file and
into the array Test [], then the method askQuestion() is called for each element in the
array.

The output given by the above application is shown here:

Entering Test

[P Tm— Configuration: <Default)
1. Enter Test Questions Quest|ons and
= answers to make a

Enter choice:1
test

Enter question:In what year did the Great Siege take place?
Enter answer:1565

Enter question:In what year did Malta become a Republic?
Enter answer:1974

Enter question:In what year did Malta first get a Constitution?
Enter answer:1921

Enter question:In what year did the events we remember on the 7th June take place?
Enter answer:1919

Enter question:In what year did Halta join the EU?
Enter answer:2004

MAIN MENU

1. Enter Test Questions
2. Try Test

3. E=xit

Enter choice:2

Question: In what year did the Great Siege take place?
Enter answer:

Question: In what vear did Malta become a Republic?
Enter answer:1974

Question: In what vear did Malta first get a Constitution?

Enter answer:1921
General Output

Configuration: <Default
MAIN MENU

1. Enter Test Questions
2. Try Test

3. E=xit

Enter choice:2

In what year did the Great Siege take place?
Answer: 1565

In what year did Halta become a Republic?
Answer: 1974

In what year did Malta first get a Constitution?
Answer: 1921

In what year did the events we remember on the 7th June take place?
Answer: 1919

In what year did Malta join the EU?
Answer: 2004

Your mark is:5/5
Trying the Test MAIN MENU
1. Enter Test Questions
and then 2. Try Test
. . . 3. E=mit
choosing the option to Exit I

I test.txt - Notepad
File Edit Format View Help
fn what year did the Great Siege take place?

e T [did malta become a Republic?
called ‘test’ Hid malta first get a Constitution?

thatis created iy the events we remember on the 7th June take place?

By this 1. 1 watta join the £u?
application.
s Java Programming 72 Marlene Galea

=2 SEC Notes

—_—

